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Memory Allocation Schemes 
The first four schemes were used in early computer systems that require the whole job to be 
loaded into a contiguous memory space before being executed.


Single-User Contiguous


• Support for only one job at a time irrespective of available space.

• Each job loaded in its entirety and allocated as much contiguous space as needed.

• If the program is too large to fit into available memory, it cannot be executed.

• Memory allocation algorithm is simple, and minimal:


1. Evaluate incoming process to check that it fits in available memory

- if it fits, load into memory; else, reject and evaluate next incoming process


2. Monitor execution in memory

- when process is finished, deallocate entire memory space and return to step 1


Fixed/Static Partitions


• First to allow multiprogramming.

• As many jobs can reside in memory as there are partitions.

• Partition size is static; system must be restarted to adjust size.

• Entire job must be loaded into memory before execution.

• Same job size restrictions as single-user (i.e., if job can’t fit, it can’t be executed).

• Introduced security concern of preventing jobs from accessing other partition memory space.

• Memory Table tracks partition sizes and statuses, memory addresses, and loaded jobs

• Problem of optimal partition sizes:


- If too small, execution of large jobs will be delayed indefinitely

- If too large, memory wastage is high


• Causes internal fragmentation (unused memory within occupied partitions).

• Slightly more involved algorithm than single-user:


1. Check incoming job memory requirements

- if greater than largest partition, reject job and go to next waiting job

- if less than largest partition, go to Step 2


2. Check the job size against the size of the first partition

- if job fits, and partition is available, load the job into that partition

- if partition is busy with another job, go to Step 3


3. Check the job size against the size of the next partition

- if job fits, and partition is available, load the incoming job into that partition

- if partition is busy with another job, go to Step 4


4. Repeat Step 3 till job is loaded into an available partition

- if no partition is free, place job in waiting queue for loading at a later time

- return to Step 1 to evaluate the next incoming job


Dynamic Partitions


• Jobs loaded into dynamically sized partitions that precisely fit each job.

• Efficient memory usage when first loaded with jobs.

• Introduces external fragmentation with subsequent loading.
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• Same constraints of entire job residing in memory before execution, and if no partition large 
enough, job can’t be loaded.


• Busy-, and free-lists are used to track partitions.

• Memory allocation policies used to optimise efficient memory use:


• Best-fit

- More efficient use of memory space

- busy/free lists ordered by size from smallest to largest


• First-fit

- Faster allocation of jobs

- busy/free lists ordered by memory location from lowest to highest


• Worst-fit

• Next-fit

• Memory deallocation algorithms


Relocatable Dynamic Partitions


• Makes more efficient use of memory by relocating partitions.

• Jobs moved to one location to make free memory one large contiguous space to accomodate 

waiting jobs.

• Relocation and Bounds Registers used to assign new memory addresses for relocated jobs.

• Compaction (defragmentation) performs complex task of relocation:


• Begin compaction when 75% of memory is in use

- Disadvantage of additional overhead if no jobs waiting at the time


• Begin compaction when jobs are waiting to be loaded

- Disadvantage of constant monitoring of waiting queues


• Begin compaction after predetermined duration

- If time period too short, system resources wasted

- If too long, excessive wait times for jobs


The next four schemes removed the requirement of the entire job being loaded into contiguous 
memory locations, introducing virtual memory.


Paged Memory Allocation


• Jobs divided into pages to fit into physical memory page frames.

- pages too small results in excessively long Page Map Tables and increased overhead

- pages too large results in excessive internal fragmentation


• Pages don’t have to be in adjacent frames, removing need for jobs to be contiguous in memory.

• Memory is used more efficiently because empty page frames can be used by pages from any 

job.

• Memory Manager determines number of pages needed before locating enough empty page 

frames and loading the pages into them.

• External fragmentation is eliminated.

• Internal fragmentation returns because most jobs don’t entirely fill the last page it occupies.

• Entire job still required to be loaded into memory before being executed.

• Increased complexity and overhead for the Memory Manager:


• Job Table: one table for the whole system containing two values for each job in memory

- size of job

- memory address of its Page Map Table
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• Page Map Table: one for every active job, with entries for each of its pages

- page number

- corresponding physical page frame number


• Memory Map Table: one table for the whole system with one entry for each page frame

- physical page frame location

- free/busy status


Demand Paging Memory Allocation


• Made virtual memory feasible.

• Utilises memory more efficiently at the expense of greater overhead and interrupt frequency.

• Removes restriction of having the entire job in memory.

• Provides the appearance of vast amounts of physical memory.

• Jobs are divided into equally sized pages residing on disk, and loaded into memory as needed.

• Pages that are never needed are never loaded, for example:


- error handling is only processed in the event of errors

- printing module is only processed if print output selected


• Takes advantage of sequential nature of programs; while one section is processed in memory, 
the rest remain idle on disk:


- pages of different sections aren’t accessed simultaneously (e.g., init, input, output, menus)

• Page replacement algorithms determine when, which, and how pages are swapped:


- FIFO (first-in, first-out): oldest pages swapped out

- LRU (least recently used): swaps out pages showing the least recent activity

- Clock Replacement: LRU variant; uses circular queue

- Bit Shifting: LRU variant; sets MSB of reference byte if page is accessed, and performs 

right shift each cycle (e.g., 10000000, 11000000, 01100000 = first loaded into memory, 
next cycle accessed, next cycle not accessed)


• Three tables are updated with each page swap:

- Page Map Table (for both the victim page and replacement page)

- Memory Map Table


• Same tables as paged memory allocation used, with three additional fields in the PMT:

1. status bit: is the page currently in memory


- Quicker to scan the table than retrieve a page from disk

2. dirty bit: have page contents been modified while in memory


- Used to save time by only writing modified pages back to disk

3. referenced bit: has the page recently been referenced


- Used by several page-swapping policies to determine which pages to swap

• Presents problem of thrashing when excessive page swapping occurs:

• Created the concept of a working set of frequently accessed pages that reside in memory to be 

directly accessed without incurring page faults.

- working set changes as program execution progresses

- the right working set can produce 90% success rates by maximising locality of reference

- failure rate formula: page faults / page requests


• Requires high-speed DASD (direct access storage device) to quickly swap pages between 
memory and disk.
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Segmented Memory Allocation


• Jobs are divided into segments of varying size:

- capitalises on program structure (i.e., logical groupings of code)

- program is segmented into modules of code that perform related functions


• Job segments don’t need to be contiguous in memory.

• Physical memory no longer divided into frames.

• Each job now has a Segment Map Table instead of a Page Map Table: 

- Segment number

- Segment length

- Permissions

- Status bit


- Dirty bit

- Reference bit

- Location in physical memory 

• Still uses one Job Table and one Memory Map Table for the whole system:

- JT lists every job being processed

- MMT monitors allocation of physical memory


• Due to dynamic segment sizes, external fragmentation returns, which requires compaction.


Segmented/Demand Paged Memory Allocation


• Combines segmentation and demand paging.

• Combines logical benefits of segmentation and physical benefits of paging:


• Program logically divided into segments of related code

- Maximises locality of reference


• Segments are divided into fixed-size pages

- Eliminates external fragmentation


• One Job Table and one Memory Map Table for the whole system.

- MMT monitors allocation of page frames in main memory


• One Segment Map Table for each job, and one Page Map Table for each segment (Figure 1):

• Job Table contains one entry per job with a pointer to the job’s SMT

• Segment Map Table lists details about each segment, including a pointer to its PMT


- permissions (e.g., read, write, execute)

- authenticated users and processes

- status, last modified, and last reference details


• Page Map Table lists each page, with a pointer to its page frame number

• When a job is allocated to the CPU, its SMT is loaded into memory, while its PMTs are loaded 

as needed.

• Address resolution requires segment and page numbers, plus the page displacement.

• Associative memory (hardware registers) stores most-recently-used pages, and is concurrently 

searched when a page request is issued.

• Sequence of events when accessing a location in memory as a result of a program instruction:


• SMT and associative memory are searched to locate desired PMT

• PMT is loaded (if not already in memory) and searched to find its frame number


- If the page isn’t in memory, page fault occurs and the page is swapped in from disk

• Page Map and Memory Map Tables are updated with the changes

• If PMT was found in the SMT, its reference is stored in one of the associative registers using 

an LRU (or other) algorithm to make one empty if they’re all full
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FIGURE 1. (SIMPLIFIED) SEGMENTED/DEMAND PAGED MEMORY TABLES 

Table 1. PMT: {status,dirty,reference} bit and frame number for each page of the job

Page Status Dirty Reference Frame

0 1 1 1 5

1 1 0 0 9

2 1 0 0 7

3 1 0 1 12

Table 2. SMT: {status,dirty,reference} bit, segment size, permissions, and address in memory

Segment Size Status Dirty Reference Permission Address

0 350 1 1 1 X 4000

1 200 1 0 0 X 7000

2 100 0 0 0 RWX -
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