
PART 2 SECURITY IN

DISTRIBUTED SYSTEMS

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

This page intentionally left blankThis page intentionally left blank

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Chapter 4

Cover-Free Families and Their Applications

San Ling and Huaxiong Wang

Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

email: lingsan, hxwang@ntu.edu.sg

Chaoping Xing

Department of Mathematics
National University of Singapore, Singapore

email: matxcp@nus.edu.sg

Cover-free families are combinatorial objects that have been used in di-
verse applications such as information theory, communications, group
testing, cryptography and information security. In this paper, we sur-
vey some mathematical results on cover-free families and present several
interesting applications to topics in secure networks and distributed sys-
tems.

4.1. Introduction

Cover-free families were first studied in terms of superimposed binary codes
by Kautz and Singleton [21] in 1964. These codes are related to retrieval
files, data communication and magnetic memories. In 1985 Erdös, Frankl
and Füredi [14] studied cover-free families as combinatorial objects, gen-
eralising the Sperner systems. Since then, they have been discussed by
numerous researchers in the context of information theory, combinatorics,
communication and cryptography and information security. In this paper
we will present several interesting applications to topics in secure networks
and distributed systems.

Definition 4.1. Let X be a set of N elements (points) and let B be a

75

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

76 S. Ling, H. Wang and C. Xing

set of T subsets (blocks) of X . Then (X,B) is called an (s, t)-cover-free
family provided that, for any s blocks B1, . . . , Bs in B and t other blocks
B′

1, . . . , B
′
t in B, one has

s⋂
i=1

Bi �⊆
t⋃

j=1

B′
j .

In other words, no intersection of s blocks is contained in the union of t

other blocks. Sometimes, we will use notation (s, t)-CFF(N, T) to denote
an (s, t)-cover-free family (X,B) in which |X | = N and |B| = T . We call
(X,B) k-uniform if |B| = k for all B ∈ B.

Cover-free families have been studied under different names, such as
superimposed codes, key distribution patterns, non-adaptive group testing
algorithms, etc. For instance, a (1, t)-cover-free family is exactly the t-
cover-free family studied by Erdös et al [14], and a (2, t)-cover-free family
was introduced, under the name of key distribution pattern, by Mitchell and
Piper [34] to provide a mechanism for distributing a secret key to each pair
of users in a network. For general s ≥ 2 and t ≥ 2, (s, t)-cover-free families
are relevant to conference key distribution and broadcast encryption [16,
44]. In the following, we show two equivalent objects of cover-free families:
coverings of order-interval hypergraph [13, 49] and disjunct systems [43, 49].

Let l, u, n be integers such that 0 < l < u < n. Let [n] = {1, 2, . . . , n}.
Define Pn;l,u = {X ⊆ [n] : l ≤ |X | ≤ u}, where 0 < l < u < n. Define a
hypergraph Gn;l,u = (P, E) as follows. Let the set of points be P = Pn;l,u,
and let the set of edges E be the maximal intervals, i.e.,

E = {I = {C ⊆ [n] : Y1 ⊆ C ⊆ Y2} : |Y1| = l, |Y2| = u, y1, Y2 ⊆ [n]}.

Definition 4.2. A covering of a hypergraph is a subset of points S such
that each edge of the hypergraph contains at least one point of S.

Let (X,B) be a set system, where X = {x1, x2, . . . , xv} and B =
{B1, B2, . . . , Bb}. The incidence matrix of (X,B) is the b × v matrix
A = (aij), where

aij =
{

1 if xj ∈ Bi

0 if xj �∈ Bi.

Conversely, given an incidence matrix, we can define an associated set sys-
tem in an obvious way.

Definition 4.3. A set system (X,B) is an (i, j)-disjunct system provided
that, for any P, Q ⊆ X such that |P | ≤ i, |Q| ≤ j and P ∩ Q = ∅, there

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 77

exists a B ∈ B such that P ⊆ B and Q ∩ B = ∅. An (i, j)-disjunct system
is denoted as an (i, j)-DS(v, b) if |X | = v and |B| = b.

Theorem 4.1. The following statements are equivalent.

(i) There exists a covering of GT ;i,T−j of size N .
(ii) There exists an (i, j)-DS(T, N).
(iii) There exists an (i, j)-CFF(N, T).

Proof. Firstly, we show that (i) is equivalent to (ii). Observe that S is
a covering of GT ;i,T−j if and only if for any Y1, Y2 ⊆ [T], Y1 ⊂ Y2, |Y1| =
i, |Y2| = T − j, there is a C ∈ S such that Y1 ⊆ C ⊆ Y2. This is equivalent
to that for any Y1, Y3 ⊆ [T], |Y1| = i, |Y3| = T − (T − j) = j, Y1 ∩ Y3 = ∅,
there is some C ∈ S such that Y1 ⊆ C and Y3 ∩ C = ∅, which is equivalent
to that ([T], S) is an (i, j)-DS(T, N).

Secondly, for the equivalence of (ii) and (iii), it is easy to see that A is
an incidence matrix of a disjunct system if and only if AT , the transpose
of A, is an incidence matrix of a cover-free family. �

4.2. Bounds

We start with a trivial construction for (s, t)-cover-free families. For any
integers T ≥ s > 0, define X = {xA : A ⊆ [T], |A| = s}. For 1 ≤ i ≤ T ,
define Bi = {xA : i ∈ A and xA ∈ X}, and B = {Bi : i ∈ [T]}. Then
it is easy to see that (X,B) is an (s, t)-CFF(

(
T
s

)
, T) for any t ≤ T − s.

We are interested in (s, t)-CFF(N, T) with better performance than this
trivial construction. That is, (s, t)-CFF(N, T) with N <

(
T
s

)
. Note that

given the values of s and t there is a trade-off between N and T in an
(s, t)-CFF(N, T). More precisely, we are interested in (s, t)-CFF(N, T) for
which T is as large as possible while s, t and N are given; or equivalently,
the value N is small as possible while s, t and T are fixed.

Let N((s, t), T) denote the minimum value of N in an (s, t)-CFF(N, T).
It is desirable to find the value of N((s, t), T). Unfortunately, as shown
in [4, 49], computing the value of N((s, t), T) turns out to be rather hard.

Theorem 4.2. Given integers s, t, T and k, the problem of deciding
N((s, t), T) ≤ k is NP-complete.

Proof. For given Let Gn;l,u be a hypergraph defined in Section 4.1, and
let

τ(Gn;l,u) = min{|S| : S is a covering of Gn;l,u}.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

78 S. Ling, H. Wang and C. Xing

It has been proved in [4] that for any given integers n, l, u and k, the problem
of deciding τ(Gn;l,u) ≤ k is NP-complete. The result follows from Theorem
4.1 immediately. �

Theorem 4.3. We have the following known bounds on cover-free families:

(a) (Erdös et al [14]) In a k-uniform (1, t)-CFF(N, T)

T ≤
(

N

	k
t

) /(
k − 1

	k
t
 − 1

)
.

(b) (Dýachkov and Rykov [11], Füredi [18] and Ruszinkó [38]) For any
t ≥ 2, it holds that for any (1, t)-CFF(N, T)

N ≥ c
t2

log t
log T,

where the constant c is shown to be approximately 1/2 in Dýachkov
and Rykov [11], approximately 1/4 in Füredi [18], approximately 1/8
in Ruszinkó [38].

(c) (Dyer et al [12])

N((s, t), T) ≥ t(s log T − log t − s log s).

(d) (Engel [13])

N((s, t), T) ≥
(

s + t − 1
s

)
log(T − t − s + 2).

(e) (Engel [13]) For any ε > 0, it holds that

N((s, t), T) ≥ (1 − ε)
(s + t − 2)s+t−2

(s − 1)s−1(t − 1)t−1
log(T − t − s + 2)

for all sufficiently large T .
(f) (Stinson et al [47]) For s, t ≥ 1 and T ≥ s + t > 2, we have

N((s, t), T) ≥ 2c

(
s+t

t

)
log(s + t)

log T,

where the constant c is the same as in (b).
(g) (Stinson et al [47], Ma and Wei [29]) For any integers s, t ≥ 1 and

T ≥ max{�(s + t + 1)/2�2, 5},

N((s, t), T) ≥ 0.7c

(
s+t
s

)
(s + t)

log
(
s+t
s

) log T,

where the constant c is the same as in (b).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 79

(h) (Stinson and Wei [46]) For positive integers s, t, T ,

N((s, t), T) ≤ min
{⌈

(s + t) log T

− log p

⌉
,

⌈
(s + t − 1) log 2T

− log p

⌉}

where p = 1 − sstt

(s+t)s+t .

Since it is hard to compute the exact value of N((s, t), T) for larger
values of T , some authors have considered another measurement on the
efficiency on CFFs, called the (performance) rate, defined as

R(X,B) =
log2 T

N
,

for a cover-free-family (X,B). We are interested in the asymptotic behavior
of the rate.

Definition 4.4. For fixed s and t, we define the asymptotic rate of (s, t)-
CFFs as

R(s, t) = lim
T→∞

log2 T

N((s, t), T)
.

The following theorem was proved in [26].

Theorem 4.4. For any integers s and t, we have

R(s, t) ≤ min
0<x<s

min
0<y<t

R(s − x, t − y)
R(s − x, t − y) + (x + y)x+y/(xxyy)

.

Table 4.1 (taken from [23]) lists some numerical values of the upper
bounds for the asymptotic rate R(s, t) which are the best results among
several choices in Theorem 4.4.

Table 4.1. Numerical Values of Upper bounds for the Rate R(s, t)

(s, t) (2, 3) (2, 4) (2, 5) (2, 6) (3, 4)
R(s, t) ≤ 0.07488 0.045522 0.028677 0.020385 0.018282

(s, t) (3, 5) (3, 6) (4, 4) (4, 5) (4, 6)
R(s, t) ≤ 0.010915 0.0066989 0.0095784 0.0045496 0.0025677

(s, t) (5, 5) (5, 6) (6, 6)
R(s, t) ≤ 0.0023889 0.0011361 0.0005969

Definition 4.5. An (s, t)-CFF(N, T) is said to be optimal if N =
N((s, t), T).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

80 S. Ling, H. Wang and C. Xing

Although computing the value of N((s, t), T) is hard, some cover-free
families with small parameters are known to be optimal. There are cases
that the trivial solution given at the beginning of this section results in the
optimal solutions. For example, from [13] and [23], we know that whenever

T ≤ s + t + t/s or T ≤ (t+1)s
s−1 −

√
36t
s−1 , then N((s, t), T) =

(
T
s

)
, which

implies that the trivial solution is an optimal solution. We list some of
these optimal families in Table 4.2 (taken from [22, 23]).

Table 4.2. Optimal (s, t)-CFF(N, T).

T = 5 6 7 8 9 10 11-12 16 -20

N((1, 2), T) = 5 6 7 8 9 9 9
N((1, 3), T) = 5 6 7 8 9 10 11-12 16
N((2, 2), T) = 10 14 14 14 18 18-20 20-22 22-26
N((2, 3), T) = 10 15 21 24-28 26-30 30 33-45 45-48

4.3. Constructions

4.3.1. Constructions from error-correcting codes

A nice construction for cover-free families is to use error-correcting codes
([14, 43]). Let Y be an alphabet of q elements. An (n, T, d, q) code is a
set C of T vectors in Y n such that the Hamming distance between any two
distinct vectors in C is at least d.

Consider an (n, T, d, q) code C. We write each codeword as ci = (ci1, . . . ,

cin) with cij ∈ Y , where 1 ≤ i ≤ T, 1 ≤ j ≤ n. Set X = [n] × Y and
B = {Bi : 1 ≤ i ≤ T }, where for each 1 ≤ i ≤ T we define Bi = {(j, cij) :
1 ≤ j ≤ n}. It is easy to see that |X | = nq, |B| = T and |Bi| = n. For each
choice of i �= k, we have |Bi ∩ Bk| = |{(j, cij) : 1 ≤ j ≤ n} ∩ {(j, ckj) : 1 ≤
j ≤ n}| = |{j : cij = ckj}| ≤ n − d.

It is straightforward to show that (X,B) is a (1, t)-CFF(nq, T) if the
condition t < n

n−d holds. We thus obtain the following theorem.

Theorem 4.5. If there is an (n, T, d, q) code, then there exists a (1, t)-
CFF(nq, T) provided that t < n

n−d .

Now if we apply the above coding construction to algebraic-geometry
codes, we immediately obtain the following corollary.

Corollary 4.1 ([37]). For any integers g, l, n with l ≤ g ≤ l < n, there
exists a (1, �(n − 1)/l�)-CFF(ng, gl−g+1).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 81

Let us look at the asymptotic behavior of cover-free families in Corollary
4.1. From [36], we know that for a fixed 0 ≤ δ < 1 and a square prime
power q, there exists a sequence of (ni, Ti, di, q)-codes such that ni → ∞ as
i → ∞ and

lim
i→∞

di

ni
= δ, lim

i→∞
logq Ti

ni
≥ 1 − δ − 1

√
q − 1

.

By Theorem 4.5, we have the following asymptotic result.

Corollary 4.2. For a fixed t ≥ 1 and a square prime power q with t <√
q − 1, there exists a sequence of (1, t)-CFF(niq, q

li−g+1) such that

lim
i→∞

log qli−g+1

niq
=

log q

q
· (1

t
− 1

√
q − 1

). (4.1)

Corollary 4.2 give examples of infinite cover-free families with positive
rates and they can be constructed explicitly. In other words, for any fixed t

there are infinite families of (1, t)-CFF(N, T) in which N = O(log T) with
explicit constructions.

Next we describe the concatenated construction given in [23, 47], which
is a powerful method in constructing a larger cover-free family from small
cover-free families.

Definition 4.6. A matrix C = (cuv)N×T with entries from [q] is called an
(s, t) separating matrix of size (N, T, q), if, for any pair of sets I, J ⊂ [T]
such that |I| = s, |J | = t and I ∩ J = ∅, there exists an integer x ∈ [N]
such that the sets {cxi, i ∈ I} and {cxj, j ∈ J} are disjoint.

The notion of the separating matrix is equivalent to those of the separate
code [22] and the separating hash family [47]. Let C be a (s, t) separating
matrix of size (N0, T0, q) and A = (aij)N1×q be the transpose of the inci-
dence matrix of an (s, t)-DS(q, N1). Denote by b1, b2, . . . , bq the columns
of A. We construct an N0N1 × T0 matrix B = C � A by substituting the
element i in C by bi. It can be verified that the resulting matrix B is the
transpose of the incidence matrix of an (s, t)-CFF(N0N1, T0) (see [45]).

Theorem 4.6. If there exist an (s, t) separating matrix of size (N, T, q)
and an (s, t)-CFF(N0, q), then there exists an (s, t)-CFF(NN0, T).

Separate matrices can be constructed from error-correcting codes, there-
fore making another link between cover-free families and error-correcting
codes.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

82 S. Ling, H. Wang and C. Xing

Theorem 4.7 ([47]). If there exists an (N, T, d, q) code, then there exists
an (s, t) separating matrix of size (N, T, q) provided that

d

N
> 1 − 1

st
.

Proof. Let C be an N × T matrix such that each column is a codeword
in an (N, T, d, q) code. Since the minimum distance of the code is d, we
know any two codewords have at most N − d elements in common. It is
easy to see that the matrix C is an (s, t)-separate matrix if N > st(N − d),
proving the desired result. �

4.3.2. Constructions from perfect hash families

Let n and m be integers such that 2 ≤ m ≤ n. Let A be a set of size n and
let B be a set of size m. A hash function is a function h from A to B. We
say a hash function h : A → B is perfect on a subset X ⊆ A if h is injective
when restricted to X . Let w be an integer such that 2 ≤ w ≤ m and let
H ⊆ {h : A → B}.

Definition 4.7. We say H is an (n, m, w)-perfect hash family if for any
X ⊆ A with |X | = w there exists at least one function h ∈ H such that h

is perfect on X . We use PHF (N ; n, m, w) to denote an (n, m, w)-perfect
hash family with |H| = N .

The terminology of “perfect hash family” is motivated by the fact that
we have a family of hash functions with the property that if at most w

elements are to be hashed, then at least one function in the family yields
no collisions when applied to the given w inputs. Obviously, one can take
all functions from A to B, which yield a perfect hash family with |H| = mn.
What makes perfect hash families interesting is that by careful design the
number of hash functions can achieve O(log n), instead of O(2n) from the
above trivial solution.

There have been different definitions and representations of perfect hash
families in the literature. For example, a PHF (N ; n, m, w) can be depicted
as an N × n array of m symbols, where each row of the array corresponds
to one of the functions in the family. This array has the property that, for
any subset of w columns, there exists at least one row such that the entries
in the w given columns of that row are distinct. A PHF (N ; n, m, w) can
also be treated as a family of N partitions of an n-set A such that each
partition π has at most m parts and such that for all X ⊆ A with |X | = w,

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 83

there exists a partition π for which the elements in X are in distinct parts
of π.

Perfect hash families originally arose as part of compiler design; see
Mehlhorn [32] for a summary of the early results in this area. They have
applications to operating systems, language translation systems, hypertext,
hypermedia, file managers and information retrieval systems; see the survey
article of Czech, Havas and Majewski [7]. More recently, they have found
numerous applications to cryptography [35, 45].

Let N(n, m, w) denote the minimum N for which a PHF (N ; n, m, w)
exists.

Theorem 4.8 ([32]). For any integers n ≥ m ≥ w ≥ 2, we have

(i) N(n, m, w) ≥ log n
log m .

(ii) N(n, m, w) ≤ 	wew2/m log n
.

It follows from Theorem 4.8 that for fixed m and w, N(n, m, w) =
O(log n).

Next, we give two constructions of cover-free families from perfect
hash families. The first construction is a direct construction from per-
fect hash families and works only for (1, t)-CFF. Assume that H is a
PHF (N ; T, m, t + 1) from A to B. Let A = {1, 2, . . . , T} and B =
{1, 2, . . . , m}. We define

X = H× B = {(h, j) : h ∈ H, j ∈ B}.

For each 1 ≤ i ≤ T , we define a subset (block) Bi of X by

Bi = {(h, h(i)) : h ∈ H},

and B = {Bi : 1 ≤ i ≤ T }. Then (X,B) is a (1, t)-CFF(Nm, T). In-
deed, |X | = Nm and |B| = T . For any t + 1 blocks Bi1 , . . . , Bit , Bj ,
since H is a PHF (N ; T, m, t + 1), there exists a hash function h ∈ H
such that h restricted to {i1, . . . , it, j} is one-to-one. It follows that
h(i1), . . . , h(it), h(j) are t + 1 distinct elements in B, which also im-
plies that (h, h(i1)), . . . , (h, h(it)), (h, h(j)) are t + 1 distinct elements in
Bi1 , . . . , Bit , Bj , respectively. Hence the union of any t blocks in B cannot
cover any remaining block. Thus, we have shown the following result.

Theorem 4.9. If there exists a PHF (N ; T, m, t + 1), then there exists a
(1, t)-CFF(Nm, T).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

84 S. Ling, H. Wang and C. Xing

The second construction from perfect hash families ([44]) provides a
method of building a larger cover-free family from small cover-free families.
It has a similar flavor as the coding construction in subsection 4.3.1.

The construction works as follows. Let (X0,B0) be an (s, t)-CFF(N0, T0)
and let H = {h1, . . . , hN} be a PHF (N ; T, T0, s + t). Consider N copies of
(X0,B0), denoted by (X1,B1), . . . , (XN ,BN), where Xi and Xj are disjoint
sets, i.e. Xi ∩ Xj = ∅, for all i �= j. For each 1 ≤ j ≤ N , denote
Xj = {x(j)

1 , . . . , x
(j)
N0

} and Bj = {B(j)
1 , . . . , B

(j)
T0

}. Then (Xj ,Bj) is an (s, t)-
CFF(N0, T0). We construct a pair (X,B) with

X = X1 ∪ · · · ∪ XN and B = {B1, . . . , Bn},

where Bi = B
(1)
h1(i)

∪ · · · ∪ B
(N)
hN (i) = ∪N

j=1B
(j)
hj(i)

for 1 ≤ i ≤ T . That is, an
element of B is a union of elements of Bj , 1 ≤ j ≤ N , chosen through the
application of the perfect hash family. We show that (X,B) is an (s, t)-
CFF(T, NN0). Clearly, |X | = NN0 and |B| = T . For any s + t blocks
Bi1 , . . . , Bis , Bj1 , . . . , Bjt , there exists at least one hash function hk ∈ H
which is one-to-one on {i1, · · · , is, j1, . . . , jt}. Since (Xk,Bk) is an (s, t)-
CFF(N0, T0), we have

∣∣∣∣∣
s⋂

u=1

Biu \
t⋃

v=1

Bju

∣∣∣∣∣ ≥
∣∣∣∣∣

s⋂
u=1

B
(k)
hk(iu) \

t⋃
v=1

B
(k)
hk(ju)

∣∣∣∣∣
≥ 1,

proving the desired result. Thus, we have the following result.

Theorem 4.10. Suppose that there exist an (s, t)-CFF(N0, T0) and a
PHF (N ; T, T0, s + t). Then there exists an (s, t)-CFF(NT0, T).

4.3.3. Constructions from designs

Let Y be a set of v elements (called points), and let A = {A1, A2, . . . , Aβ}
be a family of k-subsets of Y (called blocks). We say that (Y,A) is a
t − (v, k, λ) design if every subset of t points occurs in exactly λ blocks. It
can be shown by elementary counting that a t − (v, k, λ) design is also a
t′ − (v, k, λ′) design for 1 ≤ t′ ≤ t, where

λ′ =
λ
(

v−t′
t−t′

)
(
k−t′
t−t′

) .

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 85

Theorem 4.11 ([44]). If there exist an (s + 1) − (n, k, λ) design, then
there exists an (s, t)-CFF(λ

(
n
s

)
/
(
k
s

)
, n) provided

t ≤ n − s

k − s
.

Proof. Let (Y,A) be an (s + 1) − (n, k, λ) design, where Y =
{y1, y2, . . . , yn} and A = {A1, A2, . . . , Aβ}. We consider the dual of (Y,A),
(X,B), defined by X = {A1, A2, . . . , Aβ} and Bi = {Ar | Ar ∈ X, yi ∈ Ar}.
We show that (X,B) is an (s, t)-CFF.

For each s-subset ∆ of Y , there are exactly λ(n − s)/(k − s) elements
(blocks) from A that contain ∆. For any given t-subset Λ ⊆ Y and ∆∩Λ =
∅, and for each y ∈ Λ, there are λ blocks that contain ∆ ∪ {y}. Thus, the
number of blocks from A that contain ∆ and at least one member from Λ
is at most λt. Since λt < λ(v − s)/(k − s), it follows that there exists a
block from A that contains ∆ such that A∩Λ = ∅. It is then easy to verify
that (X,B) is indeed an (s, t)-CFF(λ

(
n
s

)
/
(
k
s

)
, n) �

Corollary 4.3. An (s + 1) − (n, k, 1) design gives rise to an (s, t)-em
CFF(N, T), where

N =

(
n

s+1

)
(

k
s+1

) =
(n − s)

(
n
s

)
(k − s)

(
k
s

) , T = n, and t <
n − s

k − s
.

From [34, 44], we know that an inversive plane is a 3− (q2 + 1, q + 1, 1)
design. Such a design is known to exist whenever q is a prime power.
Applying Corollary 4.3 we know there exists a (2, q)-CFF(q(q2 + 1), q2 +
1). Taking q = 3, we obtain a (2, 3)-CFF(30, 10), which is optimal since
N((2, 3), 10) = 30 ([22]). Note that the codewords of weight 4 in the binary
extended Hamming [8, 4, 4] code form a 3 − (8, 4, 1) design. It follows that
there is a (2, 2)-CFF(8, 14), which is optimal as well [22].

The concept of super-simple t-design was introduced by Gronau and
Mullin [20]. The construction of cover-free families from super-simple de-
signs is proposed by Kim and Lebedev [22].

Definition 4.8. A super-simple t − (v, k, λ) design is a t − (v, k, λ) design
with λ > 1 in which the intersection of any two blocks has at most t

elements.

Theorem 4.12 ([22]). A super-simple s − (n, k, λ) design gives rise to
an (s, λ − 1)-CFF(λ

(
n
s

)
/
(
k
s

)
, n).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

86 S. Ling, H. Wang and C. Xing

Proof. Let (Y,A) be a super-simple s − (n, k, λ) design, where Y =
{y1, y2, . . . , yn} and A = {A1, A2, . . . , Aβ}. As in the proof of Theorem
4.11, let (X,B) be the dual of (Y,A), where X = {A1, A2, . . . , Aβ} and
Bi = {Ar | Ar ∈ X, yi ∈ Ar}. We show that (X,B) is an (s, λ − 1)-
CFF(λ

(
n
s

)
/
(
k
s

)
, n).

For each point y, we denote by Sy ⊆ A the collection of blocks that
contain y. For any s points yi1 , . . . , yis ∈ Y , there are exactly λ blocks
from A that contain these t points. That is,

|Bi1 ∩ Bi2 ∩ · · · ∩ Bis | = λ.

Consider any other t points yj1 , . . . , yjt , where t = λ − 1. Since no two
(or more) blocks of a super-simple s design can have more than s common
points, for any � with 1 ≤ � ≤ t, we have

|Bi1 ∩ Bi2 ∩ · · · ∩ Bis ∩ Bj�
| ≤ 1.

It follows that
∣∣Bi1 ∩ Bi2 ∩ · · · ∩ Bis ∩

(
∪t

�=1Bj�

)∣∣ ≤ t < λ.

We then have

Bi1 ∩ Bi2 ∩ · · · ∩ Bis �⊆ ∪t
�=1Bj�

,

for otherwise, we would have Bi1 ∩Bi2 ∩ · · · ∩Bis ⊆ ∪t
�=1Bj�

which implies
that

∣∣Bi1 ∩ Bi2 ∩ · · · ∩ Bis ∩
(
∪t

�=1Bj�

)∣∣ = |Bi1 ∩ Bi2 ∩ · · · ∩ Bis | = λ,

a contradiction. This shows that (X,B) is an cover-free family with the
desired parameters. �

Note that it is easy to see that an (s + 1) − (n, k, 1) design is a super-
simple s − (n, k, (n − s)/(k − s)) design. Therefore, in this case Theorem
4.12 implies in Theorem 4.11.

4.4. Applications

In this section, we present several interesting applications of cover-free fam-
ilies to topics in secure distributed systems.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 87

4.4.1. Key distribution in networks

Key management for secure communication in the general network model
has been widely studied in recent years. There are typically three ap-
proaches to the general key management problem: public-key infrastructure
(PKI); trusted-server and key predistribution. The PKI schemes depend on
asymmetric cryptographic primitives, such as RSA encryption or authen-
ticated Diffie-Hellman key agreement; such schemes suffer expensive com-
putational cost and storage constraints in each node of the network. The
trusted-server schemes, such as Kerberos, rely on a trusted server to gener-
ate keys between nodes; they require a trusted infrastructure, which may
not exist or be maintained in many modern network environments, such as
Ad-Hoc networks. The key predistribution scheme distributes information
about the keys among all nodes prior to deployment. Over the past few
years, key predistribution schemes have attracted much attention because
of their suitability in many current-day network infrastructures such as Ad
Hoc networks, wireless networks, etc.

The key predistribution problem was first considered by Blom [2],
Mitchell and Piper [34], and Gong and Wheeler [19]. Assume that a key
distribution center (KDC) enables a secure communication between any
pair of nodes by issuing a unique cryptographic key to each pair of nodes.
If there are T nodes in a network, then there are

(
T
2

)
possible pairs, and

so about 1
2T 2 keys need to be generated by the KDC and all of them need

to be distributed to the nodes secretly, which may be impractical when
T is large. To address this problem, Mitchell and Piper [34] proposed a
solution in which the KDC generates a set X of N keys and issues each
node Pi (i = 1, 2, . . . , T) a subset Bi of these keys, so Bi ⊂ X. If nodes Pi

and Pj wish to securely communicate with each other, they can use a key
constructed from the set of keys contained in Bi ∩Bj (normally, this would
be the XOR of all keys in this intersection). By imposing the condition
Bi ∩Bj �⊆ Br, for all r �∈ {i, j}, a secure communication between Pi and Pj

against each node Pr is guaranteed. This approach can be further extended
to networks that are resilient against collusion attacks. If Bi ∩ Bj is not
contained in the union of any other t-tuple of subsets, then secure commu-
nication between Pi and Pj is possible even if an adversary can corrupt t

nodes in the network. Thus, a (2, t)-cover-free family can be used for key
distribution with a significant reduction on keys.

One of the major drawbacks with the key distribution pattern schemes is
that efficient constructions are typically probabilistic and result in small t,

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

88 S. Ling, H. Wang and C. Xing

which means that the maximum number of nodes that can be compromised
by an adversary cannot be too large. This makes them impractical for
many network applications such as Ad Hoc networks and distributed senor
networks (where robustness is the main concern).

There are several extensions on the cover-free family approach. Es-
chenauer and Gligor propose a random key predistribution in [15]. In their
scheme, each node receives a random subset of keys from a large key pool.
To agree on a key for communication, two nodes find one common key
within their subsets and use that key as their shared key. The original
Eschenauer-Gligor scheme does not consider an attack by a collusion of
compromised nodes in the network. Since then, many extensions of the
Eschenauer-Gligor scheme have been proposed. In [6], Chan, Perrig, and
Song propose a scheme that has l common keys for any two nodes, instead
of a single key. It can then be shown that, by increasing the value of l, the
network resilience against collusion attacks is improved.

In [27], Lee and Stinson give two deterministic key predistribution
schemes using strongly regular graphs as network graphs. One scheme
applies public, one-way functions to reduce the required key storage and
another scheme combines Blom’s scheme with strongly regular graphs,
yielding a tradeoff between the connectivity of the network and the re-
silience. Similar approaches have been developed by Du, Deng, Han, and
Varsheney [10], by Liu and Ning [28], and by other authors.

4.4.2. Antijamming systems

Traditional antijamming systems [48] use spread spectrum techniques to
increase availability. In these systems a transmitter wants to broadcast a
signal to a single receiver such that the enemy cannot jam the transmission.
In the classical communication scenario, a message modulates a carrier fre-
quency f which is known to the transmitter and receiver and so the receiver
can receive the message. However if f is publicly known, an outsider can
send a strong noise signal on the same frequency and hence completely jam
the reception. To protect against jamming, the transmitter and the receiver
can keep their shared frequency secret and use new frequencies after every
v seconds, where v is the minimum time required for the enemy to find f .
Pseudorandom generators [33] are often used to decide the new frequency.
This is the so-called frequency-hopping spread spectrum system.

Spread-spectrum systems have been used for Wireless LAN, or WLAN
[5, 41]. A WLAN is a flexible data communication system that provides an

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 89

attractive alternative to wired LAN within a building or where wires cannot
go. A PC with a wireless adapter can connect to a wired LAN equipped with
a transmitter/receiver device, called an access point, or can have a peer-
to-peer connection with a set of PCs with wireless adapters. Traditional
spread spectrum systems are for providing security and reliability between
the two ends of a single communication channel. Using spread spectrum
in group communication requires a careful adaptation of the traditional
model.

If a group member wants to broadcast a message to the rest of the
group, one possible solution is to give the transmitter’s frequency list and
frequency update table, to all the receivers. This would allow the receivers
to synchronize their receiving equipment and follow the transmitter’s fre-
quency ‘hopping’. However the system would be completely vulnerable to
jamming by a receiver simply because receivers know the secret frequencies
and can use this knowledge to jam the transmitter. That is, when more
than one receiver is considered, the attack is not limited to the outsiders
who do not know the frequencies but also could be launched by insiders
with some privileged information. In other words, using the above simplis-
tic approach means that the system only works if the receivers are assumed
trusted. This is not a reasonable assumption in an open environment.

In [9], an antijamming system was suggested. In this model, the trans-
mitter sends the same signal on a number of frequencies such that each
receiver only knows a subset of these frequencies. Suppose that each re-
ceiver Pi is given a set of secret frequencies. When the number of different
frequencies the transmitter wants to use is less than the number of receivers,
some frequencies will have to be shared. Therefore, some frequencies will
be assigned to at least two receivers.

A transmitter A will secretly choose N frequencies out of a total of M

frequencies and will send the message simultaneously over these N frequen-
cies. Knowing the frequency of a channel, a receiver may use it either to
receive the messages sent by A, or else to send noise on that frequency with
the purpose of jamming the reception of other receivers who are listening
to the same channel.

A uses a public channel allocation table. For simplicity we number the
channels from 1 to N . Each receiver Pi is assigned a collection of channels
or, in other words, a subset Bi ⊆ {1, . . . , N}. This allocation is public and
is displayed in the table. Any receiver is also given secret information which
specifies the correspondence between the allocated channels and the actual
frequency, i.e., if a receiver is assigned the channels i1, . . . , ik, it will receive

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

90 S. Ling, H. Wang and C. Xing

the associated frequencies fi1 , . . . , fik
.

We assume that there are T receivers, P1, . . . , PT , and a group of up
to t receivers might collude against a receiver Pj . In this case they can
send noise on all their allocated channels (frequencies). If Pj ’s allocated
frequencies are all among the frequencies of the colluders, then it cannot
receive any message and its reception will be jammed. We assume the chan-
nels are authenticated, that is the transmitter can be uniquely determined.
This means that if a receiver is left with even one un-jammed channel, it is
able to receive messages sent by the transmitter. It is easy to see that an
(1, t)-CFF gives rise to the channel allocation for an antijamming system
against up to t colluders.

4.4.3. Secure multicast

Multicast, or one-to-many communication is the basic form of transmission
in group communication applications and forms the main primitive for a
range of advanced telecommunication services including video broadcasting,
multi-party teleconferencing, stock quote distribution, and updating soft-
ware, etc. Multicast security has been intensively studied in recent years
(see, for example [16, 24, 44]. Secure communication in multicast environ-
ment is much more challenging than traditional point-to-point communica-
tion and raises numerous new security problems. Examples are controlling
access to the encrypted data, and efficient management of dynamic groups
where new members join or existing members need to be evicted.

A simple solution to providing secure communication in a group is by
employing conventional point-to-point cryptographic protocols. For exam-
ple, secure group communication can be achieved by giving each user a pair
of public and secret keys which can be used to encrypt messages. However
this is very inefficient: a user who wants to encrypt a message for the group
must encrypt it for each group member individually and then broadcast
the concatenation of the encrypted parts. A second solution is to share a
common key among the group members and use the key to perform the
cryptographic operation. This raises the question of how to efficiently add
new members to, or remove members from, the group such that security
of previous and future communication is guaranteed. When a new user
joins the group, the common key can be sent to the new user using se-
cure unicast. However this means that the new user can read all previous
encrypted messages. To keep the previous communication secret from the
new user, a new common key can be generated and sent to the old group

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 91

members encrypted with the old common key, and to the new user using
secure unicast. Removing users is a more difficult problem. When users
leave the group it is essential to change the group key in order to conceal
future communication from the evicted users. This is known as the user
revocation or blacklisting problem.

A simple solution to user revocation problem exists when each user in
the group shares an individual secret key with a KDC which controls the
group. When a user is to be deleted from the group, the KDC chooses a
new common key to be used for encrypting future group messages, encrypts
it with the secret key of each user and sends it to them.

In this system the group controller is the trust and communication bot-
tleneck of the system. The controller knows all the keys used by the group
members and its compromise results in the complete loss of system security.
It is also communication bottleneck of the system and any user revocation
requires its participation.

In [25], a secure multicast scheme to deal with the revocation problem
without the need for a trusted group controller is proposed. It allows any
member of the group to remove a subgroup of members and obtain a shared
key with the remaining group members. This can be used to establish
conferences within arbitrary subgroup, and initiated by a group member.

The scheme works as follows. Assume there are T users P1, . . . , PT , and
let P = {P1, . . . , PT }. The KDC distributes keys to each user during the
system setup. At a later time the users in the group can broadcast messages
such that only some designated users can decrypt the messages.

Let (X,B) be a (2, t)-CFF(N, T). In the system setup, the KDC ran-
domly selects a set of N keys k1, . . . , kN and for each user Pi gives him a
subset Ki = {kr | if xr ∈ Bi } of keys. Assume that a user Pi wants to
establish a session key SK with other users of the group except t users,
say P�1 , . . . , P�t . The user Pi encrypts the session key SK with all his keys
except those keys incident to P�1 , . . . , P�t , and broadcasts the encrypted
message. That is, Pi broadcasts {Ekr (SK) | r ∈ Bi \ (B�1 ∪ · · · ∪ B�t)},
where Ek(·) denotes a symmetric key encryption with key k. From the def-
inition of (2, t)-CFF we know that every Pj ∈ P \{P�1 , . . . , P�t} has at least
one key kr where xr ∈ Bi \(B�1 ∪· · ·∪B�t), and so he can decrypt Ekr (SK)
to obtain SK, while every P�j , 1 ≤ j ≤ t cannot decrypt the message since
he does not have any of the keys used for encryption.

It is not hard to see that the above scheme based on a (2, t)-CFF(N, T)
can remove up to t users from a group of N users. It requires each user to
store fewer than N keys, and the maximum number of transmissions is N .

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

92 S. Ling, H. Wang and C. Xing

The system is secure against collusion of t malicious users.
The results on cover-free families in Section 4.2 show that the number

of keys that need to be stored by each user is of the order O(log T) and
that the length of the message needed for updating the session key and
removing t users is O(log T), where the message is the concatenation of the
session key encrypted with a number of keys.

4.4.4. Broadcast authentication

One fundamental goal in cryptography is to ensure integrity of sensitive
data, which simply means providing assurance about the content and origin
of the communicated and/or stored data. Data integrity is accomplished
by means such as digital signature schemes and message authentication
codes. In a digital signature scheme the signature is generated using the
secret key of the signer, and the authenticity is verified by a public verifica-
tion algorithm. The security of signature schemes relies on some assumed
computational complexity of problems such as the discrete logarithm and
factorisation problems. A message authentication code (or MAC), on the
other hand, is a private-key based cryptosystem, requiring to share a secret
key between a sender and a receiver ahead of the communication. A typi-
cal example of a MAC is constructed by using block ciphers (e.g., DES or
AES) in the cipher block chaining (CBC) mode. The MACs based on block
ciphers are generally much faster than digital signature schemes, but there
is no known proof of security, not even one based on a plausible computa-
tional assumption. However, it is possible to construct MACs that can be
proved secure, without any computational assumptions. Such MACs are
usually called unconditionally secure authentication codes.

Conventional authentication systems deal with point-to-point message
authentication in which the sender and the receiver share a secret key and
are both assumed honest. Multi-receiver (or broadcast) authentication sys-
tems are an extension of the point-to-point authentication model in which
there are multiple receivers who cannot all be trusted. The sender broad-
casts a message to all the receivers who can individually verify the au-
thenticity of the message using their secret key information. There are
malicious groups of receivers who use their secret keys and all the previ-
ous communication in the system to construct fraudulent messages. They
succeed in their attack as soon as a single receiver accepts the message as
being authentic. In a (t, T) multi-receiver authentication system there are
T receivers such that the coalition of any t receivers cannot cheat other

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 93

receivers.
A authentication code (or A-code) is a code where the source state

(i.e. plaintext) is concatenated with an authenticator (or a tag) to obtain a
message which is sent through the channel. Such a code is a triple (S, E , T)
of nonempty finite sets together with an authentication mapping f : S×E →
T . Here S is the set of source states, E is the set of keys and T is the set of
authenticators. When the transmitter wants to send the information s ∈ S
using a key e ∈ E , which is secretly shared with the receiver, he transmits
the message m = (s, t), where s ∈ S and t = f(s, e) ∈ T . When the receiver
gets a message m = (s, t), she checks the authenticity by verifying whether
t = f(s, e) or not, using the secret key e ∈ E .

Obviously, a multi-receiver authentication system can be constructed
from a conventional authentication code by allowing the sender to use T

authentication keys for the T receivers and broadcast a codeword that is
simply a concatenation of the codewords for each receiver. The length of
the combined authentication tag is T times the length of the individual
receiver’s authentication tag, and the sender’s key is T times the size of a
receiver’s key. This is a very uneconomical method of authenticating a mes-
sage as such a system can prevent attacks by even T −1 colluding receivers,
while it is reasonably realistic to assume that an (t, T) multi-receiver au-
thentication system is sufficient to satisfy the security requirements. That
is, we assume that in every group of t+1 receivers there is at least one hon-
est receiver. In [39, 40], it has been shown that cover-free families can play
a role to improve the above trivial construction of broadcast authentication
systems.

Assume that (X,B) is a (1, t)-CFF(N, T) with X = {x1, . . . , xN} and
B = {B1, . . . , BT }, and assume that (S, E , T), together with the authenti-
cation mapping f : S ×E → T , is an authentication code∗. We construct a
(t, T) multi-receiver authentication system with T receivers P1, . . . , PT as
follows. The sender randomly chooses a t-tuple of keys (e1, . . . , eN) ∈ EN

and privately sends ei to every receiver Pj for all j with xi ∈ Bj , 1 ≤ i ≤ t.
To authenticate a source message s ∈ S, the sender computes ai = f(s, ei)
for all 1 ≤ i ≤ N and broadcasts (s, a1, . . . , aN) to all the receivers.
Since the receiver Pj holds the keys ei for all i with xi ∈ Bj , Pj accepts
(s, a1, . . . , aN) as authentic if ai = f(s, ei) for all i satisfying xi ∈ Bj.

It was proved in [39] that this construction gives rise to a (t, T) broadcast
authentication system where both the sizes of the key for the sender and
∗(S, E, T) can be either an unconditionally secure A-code or a computationally secure
MAC.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

94 S. Ling, H. Wang and C. Xing

of the broadcasting message are N times of the underlying point-to-point
authentication code, in contrast to the T times increase for the trivial con-
struction. Similarly, in [40] a (2, t)-CFF was applied to construct broadcast
authentication with dynamic senders.

4.4.5. Secret sharing schemes

We describe a variant of cover-free families and its applications in secret
sharing schemes. Strong cover-free families were first considered in [8] pro-
viding solution to the problem of redistribution of shares in secret sharing
schemes. They have been used later [31] as a mechanism for implementing
shared encryption and decryption for block ciphers.

Definition 4.9. Let X be a set of N elements (points) and let B be a set of
T subsets (blocks) of X . Then (X,B) is called a t-strong-cover-free family
provided that, for any ∆, Λ ⊆ {1, . . . , T} with |∆| = t and |Λ| = t − 1:

∣∣∣∣∣
⋃
i∈∆

Bi

∣∣∣∣∣ >

∣∣∣∣∣∣
⋃
j∈Λ

Bj

∣∣∣∣∣∣ .

Sometimes, we will use the notation t-SCFF(N, T) to denote a t-strong-
cover-free family (X,B) in which |X | = N and |B| = T .

A secret sharing scheme is a method of protecting a secret among a
group of participants in such a way that only certain specified subsets of
the participants (those belonging to the access structure) can reconstruct
the secret. Secret sharing schemes were first proposed for cryptographic
applications in which the secret is a highly sensitive piece of data, and the
secret sharing scheme is used to control access to this data by requiring
certain subsets of participants to cooperate in order to retrieve the data.
Examples of applications include controlling access to a bank vault, in-
stallation of high level cryptographic master keys and enabling a nuclear
missile.

A secret sharing scheme is normally initialised by an external trusted
dealer who securely transfers a piece of information relating to the secret,
called a share, to each participant in the scheme. The first secret shar-
ing schemes proposed by Shamir [42] and Blakley [1] were (t, T)-threshold
schemes where the access structure consists of all subsets of at least t (out
of a total of T) participants. Secret sharing schemes, and in particular
threshold schemes, have become an indispensable basic cryptographic tool

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 95

in any security environment where active entities are groups rather than
individuals.

In certain applications, the set of participants might change or a new
threshold value may be necessary. These changes could result from changes
in the structure of the organization or level of sensitivity of the secret. A
natural question is if it is possible to re-distribute the shares so that the
new requirements can be met. More specifically, given an (�, N) threshold
scheme, whether it is possible to redistribute the shares in an efficient way
such that a new (t, T ′) threshold scheme can be obtained. The straightfor-
ward solution would be to redesign the secret sharing system for the new
threshold structure. This is an expensive approach. We see how to use
strong cover-free families to achieve this goal without the need to generate
new shares, but only redistribute existing shares among the new partici-
pants.

Let (X,B) be a t-SCFF(N, T) and

max
Λ

{| ∪i∈Λ Bi|} < � ≤ min
∆

{| ∪j∈∆ Bj |},

where Λ and ∆ run through all the (t − 1)-subsets and t-subsets of
{1, 2, . . . , T}, respectively. Let X be the N shares of an (�, N) threshold
scheme. We assign a subset of X to each of the T participants according
to the t-SCFF(N, T); that is, participant Pi has a subset of shares Bi. It
is easy to see that the new share distribution gives rise to a (t, T) secret
sharing scheme.

Cover-free families and their variants are also used to construct other
threshold cryptosystems, such threshold block ciphers [31] and threshold
MAC [30].

4.5. Conclusions

We have surveyed some known bounds and constructions for cover-free fam-
ilies. We have also presented several interesting applications of cover-free
families to topics in secure distributed systems. Cover-free families and
their generalisations have been used for many other cryptographic prob-
lems such as frameproof codes and traceability schemes [17], multiple time
signature schemes [37] and blacklisting problems [24] etc.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

96 S. Ling, H. Wang and C. Xing

References

[1] G. R. Blakley, “Safeguarding cryptographic keys”, Proceedings of AFIPS
1979 National Computer Conference, 48, 313–317 (1979).

[2] R. Blom, “An optimal class of symmetric key generation systems”, In Proc.
Eurocrypt ’84, Lecture Notes in Computer Science, Vol. 209, 335–338 (1985).

[3] D. Boneh and J. Shaw, “Collision-secure fingerprinting for digital data”,
IEEE Trans. Inform. Theory, Vol. 44, 1897–1905 (1998).

[4] I. Bouchemakh and K. Engel, “The order-interval hypergraph of a finite
poset and th König property”’, Discrete Math, Vol. 170, 51–61 (1997).

[5] B. Bruegge, B. Bennington, “Applications of Mobile Computing and Com-
munication”, IEEE Personal Communication, Vol 3, No 1, 64-71 (1996)

[6] H. Chan, A. Perrig, and D. Song, “Random key predistribution for sensor
networks”, Proceedings of IEEE Symposium on Security and Privacy, 197–
213 (2003).

[7] Z. J. Czech, G. Havas and B. S. Majewski, “Perfect hashing”, Theoretical
Computer Science, Vol. 182, 1–143 (1997).

[8] Y. Desmedt, R. Safavi-Naini and H. Wang, “Redistribution of mechanical
secret shares”’, Financial Cryptography ’02, Lecture Notes in Computer
Science, Vol. 2357, 238–252 (2002)

[9] Y. Desmedt, R. Safavi-Naini, H. Wang, L. M. Batten, C. Charnes and J.
Pieprzyk, “Broadcast anti-jamming systems”, Computer Networks, Vol. 35
(2-3), 223–236 (2001).

[10] W. Du, J. Deng, Y.S. Han, and P.K. Varsheney, “A pairwise key predistribu-
tion schemes for wireless sensor network”, Proc. of the 9th ACM Conference
on Computer and Communications security, 42–51(2003).

[11] A. G. Dyachkov and V. V. Rykov, “Bounds on the length of disjunctive
codes”, Problemy Paredachi Informatsii, Vol. 18, No. 3, 7–13 (1982).

[12] M. Dyer, T. Fenner, A. Frieze, and A. Thomason, “On key storage in secure
networks”, J. Cryptography, Vol. 8, 189–200 (1995).

[13] K. Engel, “Interval packing and covering in the boolean lattice”’, Combin,
Probab. Comput. Vol. 5, 373–384 (1996).

[14] P. Erdös, P. Frankl and Z. Füredi, “Families of finite sets in which no set is
covered by the union of r others”, Israel J. Math., Vol. 51, 79–89 (1985).

[15] L. Eschenauer and V. Gligor, “A key-management scheme for distributed
sensor networks”, Proceedings of the 9th ACM Conference on Computer
and Communication Security, 41–47 (2002).

[16] A. Fiat and M. Naor, “Broadcast encryption”, Advances in Cryptology –
CRYPTO ’93, Lecture Notes in Computer Science, Vol. 773, 480–491 (1994).

[17] A. Fiat and T. Tassa, “Dynamic traitor tracing”, Advances in Cryptology
– CRYPTO ’99, Lecture Notes in Computer Science, Vol. 1666, 354–371
(1999).

[18] Z. Füredi, “On r-cover-free families”, J. Combinatorial Theory Series A, Vol.
73, 172–173 (1996).

[19] L. Gong and D.H. Wheeler, “A matrix key storage scheme”, Journal of
Cryptology, Vol. 2, 51–59 (1990).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

Cover-Free Families and Applications 97

[20] H.-D. O. F. Gronau and R. S. Mullin, “On super-simple 2− (v, 4λ) designs”,
J. Combin. Math. Combin. Comput, Vol. 11, 113–121 (1992)

[21] W. H. Kautz and R. C. Singleton, “Nonrandom binary superimposed codes”,
IEEE Trans. Inform. Theory, Vol. 10, 363–377 (1964).

[22] H.-K. Kim and V. Lebedev, “On optimal superimposed codes”, Journ. Com-
bin. Designs, Vol. 12, 79–91 (2003).

[23] H.-K. Kim, V. Lebedev and D. Y. Oh, “Some new results on superimposed
codes”, Journ. Combin. Designs, (2004).

[24] R. Kumar, S. Rajagopalan and A. Sahai, “Coding constructions for blacklist-
ing problems without computational assumptions”, Advances in Cryptology
– CRYPTO ’99, Lecture Notes in Computer Science, Vol. 1666, 609–623
(1999).

[25] H. Kurnio, R. Safavi-Naini, W. Susilo and H. Wang, “Key management
for secure multicast with dynamic constrollers”, Information Security and
Privacy, 5th Australasian Conference, ACISP00, Lecture Notes in Computer
Science, Vol. 1841, 178–190 (2000)

[26] V. Lebedev, “New asymptotic upper bound on the rate of (w, r) cover free
codes”, Problems of Information Transmission, Vol. 39, 75–89 (2003)

[27] J. Lee and D.R. Stinson, “Deterministic key predistribution schemes for
distributed sensor networks”, Proc. of SAC, Lecture Notes in Computer
Science, Vol. 3357, 294–307 (2004).

[28] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor net-
works”, ACM Transactions on Information and System Security (TISSEC),
Vol. 8, 41–77 (2005)

[29] X. Ma and R. Wei, “On a bound of cover-free families”, Designs, Codes and
Cryptography, Vol. 32, 303-321 (2004).

[30] K. Martin, J. Pieprzyk, R. Safavi-Naini, H. Wang and P. Wild, “Threshold
MACs”, 5th International Conference on Information Security and Cryptol-
ogy (ICISC ’02), Lecture Notes in Computer Science, Vol. 2587, 237–252
(2003).

[31] K. Martin, R. Safavi-Naini, H. Wang and P. Wild, “Distributing the encryp-
tion and decryption of a block cipher”, Designs, Codes and Cryptography,
Vol. 36, 263–287 (2005).

[32] K. Mehlhorn, Data Structures and Algorithms, Volume 1, Springer, Berlin,
1984.

[33] A. Menezes, P. van Oorschot, and S. Vanstone, Applied Cryptography. CRC,
Boca Raton, 1996.

[34] C. J. Mitchell and F. C. Piper, “Key storage in secure networks”, Discrete
Applied Math., Vol. 21, 215–228 (1988).

[35] N. Niederreiter, H. Wang and C. Xing, “Function fields over finite fields and
their applications to cryptography,” in Topics in Geometry, Coding Theory
and Cryptography, by Arnaldo Garcia and Henning Stichtenoth (editors),
Springer, 2006, to appear.

[36] H. Niederreiter and C. P. Xing, Rational points on curves over finite fields:
theory and applications, Cambridge University Press, Cambridge, 2001.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

May 16, 2007 15:26 World Scientific Review Volume - 9in x 6in Chapter4

98 S. Ling, H. Wang and C. Xing

[37] J. Pieprzyk, H. Wang and C. P. Xing, “Multiple-time signature schemes
secure against adaptive chosen message attacks”, 10th Workshop on Selected
Areas in Cryptography (SAC ’03), Lecture Notes in Computer Science, Vol.
3006, 88–100 (2004).

[38] M. Ruszinkó, “On the upper bound of the size of the r-cover-free families”,
J. Combinatorial Theory Series A, Vol. 66, 302–310 (1994).

[39] R. Safavi-Naini and H. Wang, “New results on multireceiver authentica-
tion codes”, Advances in Cryptology – EUROCRYPT ’98, Lecture Notes in
Computer Science, Vol. 1403, 527–541 (1998).

[40] R. Safavi-Naini and H. Wang, “Efficient authentication for group communi-
cation”, Theoretical Computer Science, Vol. 269, 1–21 (2001).

[41] M Satyanarayanan, “Mobile Information Access”, IEEE Personal Commu-
nication, Vol 3, No 1, 26 -33 (1996)

[42] A. Shamir, How to share a secret, Communications of the ACM, Vol. 22,
612–613 (1976).

[43] J. N. Staddon, D. R. Stinson and R. Wei, “Combinatorial properties of
frameproof and traceability codes”, IEEE Trans. Inform. Theory, Vol. 47,
1042–1049 (2001).

[44] D. R. Stinson, “On some methods for unconditionally secure key distribution
and broadcast encryption”, Designs, Codes and Cryptography, Vol. 12, 215–
243 (1997).

[45] D. R. Stinson, T. van Trung and R. Wei, “Secure frameproof codes, key
distribution patterns, group testing algorithms and related structures”, J.
Statist. Plan. Infer., Vol. 86, 595–617 (2000).

[46] D. R. Stinson and R. Wei, “Generalised cover-free families”, Discrete Math-
ematics, Vol. 279, 463-477 (2004).

[47] D. R. Stinson, R. Wei and L. Zhu. “Some new bounds for cover-free families”,
J. Combinatorial Theory Series A, Vol. 90, 224–234 (2000).

[48] A. J. Viterbi, CDMA principles of spread spectrum communications,
Addison-Wesley, Reading, Massachusetts, 1995.

[49] R. Wei, “On cover-free families”, manuscript, 2006.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

99

Chapter 5

Group Rekeying in Multi-Privileged Group

Communications for Distributed

Networking Services

Guojun Wang
1,3

, Jie Ouyang
1
, Hsiao-Hwa Chen

2,∗
 and Minyi Guo

3

1
School of Information Science and Engineering,

Central South University, Changsha, Hunan Province, P. R. China, 410083;
2
Institute of Communications Engineering,

National Sun Yat-Sen University, Kaohsiung City, 804 Taiwan;
3
School of Computer Science and Engineering, University of Aizu,

Aizu-Wakamatsu City, Fukushima 965-8580, Japan.

Many applications need to support multi-privileged group

communications, which contain multiple data streams. Group users can

subscribe to different data streams according to their interest and have

multiple access privileges. In this paper, we first introduce some

existing rekeying schemes for multi-privileged group communications

and analyze their advantages and disadvantages. Then we propose an

ID-based Hierarchical Key Graph Scheme (IDHKGS) to manage

multi-privileged group communications. The proposed scheme employs

a key graph, on which each node is assigned a unique ID according to

access relations between nodes. When a user joins/leaves the group or

changes access privileges, other users in the group can deduce the new

keys using one-way function by themselves according to the ID of

joining/leaving/changing node on the graph, and thus this scheme can

greatly reduce the rekeying overhead.

∗Prof. Hsiao-Hwa Chen is the corresponding author. He is with the Institute of

Communications Engineering, National Sun Yat-Sen University, Kaohsiung City, 804

Taiwan, Tel: +886-7-5254488, Fax: +886-7-5254475, Email: hshwchen@ieee.org.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.100

1. Introduction

With the rapid development of the Internet and the increase of network

bandwidth, more and more applications integrate with the Internet.

These network applications are based upon unicast or multicast

communications. Unicast employs a client-server model, where the

server handles the requests of all users and delivers suitable packets to

users via a dedicated point-to-point channel. However, unicast is

inefficient if all users request the same data stream. On the contrary,

multicast is an efficient method for delivery of data from a source to

multiple recipients, such as teleconference, information service and live

sports. Compared with unicast, multicast can reduce sender transmission

overhead and network bandwidth requirements.

In order to guarantee the security of communications, group

communications must ensure that a user that isn’t a member in a group

can’t access any communications among the group. In order to achieve

this requirement, an encryption key, also known as the Session Key (SK)

is shared by all legitimate group members.
1
 In addition, in order to

ensure forward secrecy and backward secrecy,
2
 the SK should be

changed after every join and leave so that a former group member has no

access to current communications and a new member has no access to

previous communications.

In traditional group communication schemes,
3-8

 all members in a

group have same level of access privilege. In these schemes, if members

hold the decryption key, they can access all the content; otherwise, they

can’t read anything. In order to improve the scalability of these schemes,

reducing the communication overhead and the rekeying overhead are the

major design concerns.

However, many group applications contain multiple related data

streams and the members have different access privileges. For example:

• Multimedia applications distributing contents in multi-layer coding

format. In video broadcasting, users with normal TV receivers can

receive the contents with the normal format only, while users with

HDTV receivers can receive the contents with both the normal

format and the extra information needed to achieve HDTV

resolution.
9

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 101

• In e-newspaper broadcasting, there are multiple data streams to

broadcast the contents of top news, weather forecasts, financial news,

stock quotes, and sports news. The service provider also classifies

users into several membership groups, such as gold, silver sports,

silver finance and basic. In such an application, different

membership groups can access different contents.
10

Key management in multi-privileged group communications is

crucial and complicated due to two factors. First, the service generally

provides multiple data streams and encrypts different data streams using

separate SKs.
11

 Users can subscribe to one or multiple data streams and

should have the corresponding SKs for the purpose of security. The

challenge is how to manage these keys while ensuring that no users can

access the key and data beyond their privileges. Second, not only the

users can join or leave the group at will, but also the users can change

their access privileges according to their interest at any time. Hence, a

key management scheme should be flexible to accommodate users’

join/leave/change requirements. These challenging issues raise the

critical problem of how we can efficiently manage the keys when users

join/leave/change their access privileges. In this paper, we will present a

new multi-privileged group rekeying scheme. The proposed scheme

employs a key graph to manage SKs and exploits a one-way function to

update the keys
12

 in order to reduce the rekeying messages in the

join/leave and change operations.

The rest of the paper is structured as follows. In Section 2, we

describe the service model and logical key hierarchy. In Section 3, we

introduce some existing rekeying schemes for multi-privileged group

communications. In Section 4, we propose a novel rekeying scheme.

Finally, we conclude this paper in Section 5.

2. Preliminaries

In this section, we first introduce the basic concepts that describe the

group communication systems containing multiple data streams and

users with different access privileges, and then describe the basic idea of

key tree in group communications containing single data streams.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.102

2.1. System descriptions

2.1.1. One-dimensional data stream

Let {r1, r2, ...} denote the set of resources in a group communication

system. In such a system, each resource corresponds to a data stream.

A Data Group (DG) consists of a set of users that can access to a

particular resource. Obviously, the DGs can have overlapped

membership because users may subscribe to multiple resources. The DGs

are denoted by D1, D2, ... , DM, where M is the total number of the DGs.

A Service Group (SG) consists of a set of users who can access the

exactly same set of resources. The users in each SG have same access

privilege. The SGs have non-overlapped membership. The SGs are

denoted by S1, S2, ... , SI, where I is the total number of SGs. In order to

make clear mathematical the typical access relationships in group

communications,
i

mt is defined as:

1, the users in SG S
i
subscribe to resource r

m
i

mt =

0, otherwise

for i = 1, ... , I, and m = 1, ... , M. In addition, S
0
 is defined as a virtual

SG, which represents users who do not participate in any group

communications.

The following Example 1 and Example 2 are two typical applications

of multimedia group communications.
9

Example 1: Multimedia applications that distribute contents in

multi-layer format. The access relations are illustrated in Table 1.

Table 1 Multi-layer service groups and their access relations

Access

relation

D1

(r1: base

layer)

D
2

(r2: enhancement

layer 1)

D3

(r3: enhancement

layer 2)

S{001} √

S{011} √ √

S{111} √ √ √

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 103

Example 2: Multicast programs containing several related services, as

shown in Table 2.

2.1.2. Multi-dimensional data stream

An MPEG-4 FGS video frame, supporting T PSNR service levels and M

bitrate service levels, is divided into T×M different two-dimensional

units.
13

 A single tile JPEG 2000 frame can support 4-dimensional

scalability innately: resolution, quality, component and precinct. That is,

data streams are scalable in multiple dimensions.

Suppose there is a scalable video with 2 resolution levels and 3

quality layers. The group has 6 data streams, as shown in Table 3.

Users that subscribe to rij can access a scalable unit of resolution i and

quality layer j. Similarly, a Service Group (SG) defines a set of users

who receive the same set of data streams. When an SG has a privilege to

access the video stream at resolution 0 with full quality, the users in this

SG can receive r00, r01 and r02.

Table 2 Cellular phone service groups and their access relations

Access relation D
1

(r1: news) D
2

(r2: stock quote) D3 (r3: traffic/weather)

S{001} √

S{010} √

S{100} √

S{011} √ √

S{101} √ √

S{110} √ √

S{111} √ √ √

Table 3 Data streams in video

 Lowest quality Middle quality Full quality

Resolution level 0 r00 r01 r02

Resolution level 1 r10 r11 r12

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.104

Each data stream needs one unique SK to encrypt the data. In order to

achieve access control, the users in each DG share an SK. If a user

subscribes to multiple data streams, it needs an SK for each data stream.

When a user joins or leaves the group, the SKs the user holds must be

changed. However, when a user switchs between SGs, it is unnecessary

to change SKs for data streams to which the user is still subscribing.

2.2. Logical key hierarchy

Logical Key Hierarchy (LKH)
14

 scheme provides an efficient and secure

mechanism to manage the keys and to coordinate the key update. The

LKH employs a hierarchical tree whose root node is associated with a

group key and whose leaf nodes are individual keys of all users in the

group. The intermediate nodes correspond to Key Encryption Key

(KEK). Each user in the group holds a set of keys on the path from its

leaf to the root. Consider a multicast group with six users. The KDC

constructs a hierarchy of keys as shown in Fig. 1. The root node k1-6 is

group key, and the user u2 owns k2, k1-2, k1-4 and k1-6.

K1-6

K6

K4K3K2K1

K3-4K1-2

K5-6K1-4

u1

u6u5

u4u3u2

K5

Fig. 1 Logical key hierarchy

Waldvogel et al.
15

 present an efficient scheme to update the key tree

when users dynamically join or leave. Each key contains a unique key ID,

a version field and a revision field, as shown in Fig. 2. When a user wants

to join the group, the KDC assigns a leaf node to represent the new user,

and increases the revision numbers of all keys on the path from the leaf

node to the root by passing the keys through a one-way function. When a

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 105

user notices the revision change in ordinate data packet, the user updates

the keys with new revision number from old key using the one-way

function. In this case, the KDC needs only to send one rekeying message

to the new user. In addition, when a user wants to leave the group, the

KDC updates the keys that are held by the leaving user. The number of

rekeying messages for a user leaving increases linearly with the

logarithm of group size.

 Fixed ID Version Revision Secret Material

Fig. 2 Structure of a key

2.3. Requirements of the rekeying schemes for multi-privileged

group communications

Obviously, it is impossible to directly apply the logical key hierarchy to

multi-privileged group communications. In order to achieve hierarchical

access control, a simple method is to construct a separate key tree for

each DG. The leaves are associated with the users in each DG. The

method is very simple and it is easy to manage the keys and the

communications. But the method can bring redundancy because DGs

have overlapped membership and doesn’t scale well when the number of

data streams increases.

Therefore, the rekeying schemes for multi-privileged group

communications should provide security, flexibility and scalability.

• Security: Each user may subscribe to one or multiple resources. The

rekeying schemes must prevent the user from accessing any data

before he joins or after he leaves the group. In addition, the rekeying

schemes must ensure that the user can’t access the data that he

doesn’t subscribe to.

• Flexibility: Besides joining or leaving the group, the users may

change their access privileges, which can be considered that the users

switch between different SGs. Because of the dynamics of users, the

rekeying schemes need to support users’ join/leave/ switch at any

time.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.106

• Scalability: When a new SG joins the group communications or an

SG in a group decomposes, it should not lead to the reconstruction of

the structure for key management. In other words, it should support

the dynamic service group formation and decomposition.

3. The Existing Key Management Schemes

3.1. Multi-group key management scheme (MGKMS)

In order to eliminate the redundancy because of overlapped membership

among DGs, Sun and Liu
9
 propose a Multi-Group Key Management

Scheme (MGKMS).

3.1.1. Key graph construction

The MGKMS scheme employs an integrated key graph to manage the

keys when a user joins/leaves/switches. The key graph is constructed as

follows:

(i) The KDC constructs an SG-subtree for each SG. The root of the

SGi-subtree is the SG key S
iK . The leaves are the users in the SG Si.

(ii) The KDC constructs a DG-subtree for each DG. The root of the

DGm-subtree is the DG key D
mK . The leaves are the SG keys in

which the users can access the resource rm.

(iii) The KDC generates the key graph by connecting the leaves of the

DG-subtrees and the roots of the SG-subtrees.

The procedure of constructing the integrated key graph is illustrated

in Fig. 3. Suppose each SG has 4 users. Each user in Si holds a set of

keys on the paths from the leaf to the root of the DG-subtree of

{Dm, ∀ m : i
mt =1}.

3.1.2. Rekeying algorithm

Here, a switching user changes the SG from Si to Sj. iφ denotes a set of

keys that the user holds in Si, and jφ denotes a set of keys that the user

holds in Sj. The rekeying algorithm consists of 2 steps as follows:

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 107

(i) The KDC updates the keys in ji φφ ∩ through a one-way function

and increases the revision numbers of these keys. When users notice

that the revision numbers of keys they hold increase, they compute

the new keys using the same one-way function.

(ii) The KDC updates the keys in ji φφ ∩ , increases their version

numbers and sends the new keys encrypted with their children keys

to the users.

Fig. 3 Multi-group key management graph construction

3.1.4. Summary

The MGKMS scheme can achieve the forward and backward secrecy

when users join/leave the group or switch between different SGs.

Compared with the tree-based key management scheme in single

multicast communications, it can greatly reduce the storage, computation

and communication overheads. However, if there are complicated

relations between SGs and DGs, the merging key graph step will also be

complicated. In addition, the scheme can’t flexibly deal with formation

and decomposition of SGs.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.108

3.2. Hierarchical access control key management scheme (HACKMS)

In many applications, users and data streams both form a partially

ordered hierarchy, but the above MGKMS scheme only considers the

former. Therefore, a Hierarchical Access Control Key Management

Scheme (HACKMS)
10

 is proposed, which considers both partially

ordered users and partially ordered data streams.

Take Fig. 4 as an example, by using the MGKMS scheme, the key

graph has five DGs and five SKs. However, in the HACKMS scheme, it

needs only three SKs. Because in the HACKMS scheme, the data

streams which can be accessed by same SGs are merged into one

resource group, and each resource group needs only one SK even though

it contains multiple data streams.

Fig. 4 E-newspaper service groups and their access relations

3.2.1. Key graph construction

Based on the access relations shown in Fig. 4 and according to the

Directed Acyclic Graph (DAG) of SGs (Fig. 5) and the DAG of resource

groups (Fig. 6),
16

 the unified DAG (Fig. 7) is formed in order to unify the

relations of SGs and resource groups.

 Fig. 5 SG DAG Fig. 6 Resource group DAG

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 109

The HACKMS scheme presents an algorithm to construct a key graph

based unified DAG shown in Fig. 8. The algorithm traverses the unified

DAG in breath-first search and constructs the key graph from bottom to

top. The main steps of the algorithm are illustrated as follows:

Fig. 7 Unified DAG

(i) The KDC constructs a subtree for each SG.

(ii) Each vertex in unified DAG is colored white.

(iii) If vertex Vi is visited and all vertices that are adjacent to Vi are

colored black, then the Vi is colored black.

(iv) The KDC constructs a tree for all SGs in Vi and in all vertices

reachable to Vi, whose leaf nodes are associated with the roots of

SG-subtrees and whose root node is notated rki.

(v) If the vertex Vi contains resource group Ri, rki is replaced by the

resource group key dki.

(vi) Jump to (iii), until all vertices in unified DAG are colored black.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.110

Fig. 8 The key graph by the HACKMS scheme

3.2.2. Summary

The HACKMS scheme considers the partially ordered relationship

among data streams, and the number of auxiliary keys of DGs and SKs is

less than that of the MGKMS scheme. So, compared with the MGKMS

scheme, it reduces the storage and rekeying overheads at key server and

users. But the construction of key graph is a little bit complicated,

because it must first form a unified DAG for SGs and resource groups. In

addition, if the partially ordered relationship of data streams is changed,

the key graph must be reconstructed.

3.3. Dynamic access control scheme (DACS)

The above schemes only support one-dimensional data streams.

However, in some applications, there are multi-dimensional data

streams.17 Therefore, Dynamic Access Control Scheme (DACS)
18

 is

proposed, which supports not only one-dimensional data streams, but

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 111

also multi-dimensional data streams. Similarly, this scheme employs a

key graph to manage the keys.

3.3.1. Key graph construction

(i) The KDC constructs a subtree for each SG. The root node of

SG-subtree Si is SG key srki.

(ii) The root of SG-subtree Si is associated with an Access Key (AK) set

Ωi. The AK set consists of the SKs of the scalable streams that the

users in Si can access. The CEK set consists of all the unit

encryption keys of a scalable stream.

The key management graph is shown in Fig. 9. Each user in Si holds

the keys on the path from the leaf node to the root srki and an AK set Ωi.

3.3.2. Rekeying algorithm

Suppose a user u switches from Si to Sj, the rekeying steps are illustrated

as follows:

Fig. 9 Key management graph supporting multiple service groups

(i) Update of the keys on the path from the individual key of u to the

srki. The KDC generates these new keys, encrypts them using their

children keys and distributes them to users in Si.

(ii) Update of the keys in ji Ω∩Ω . The KDC generates a secret cks to

update the new keys in ji Ω∩Ω from old keys using a one-way

function such that)(' kHk Sck= ('k denotes the new version of the

old k), and increases the version numbers of those keys. The KDC

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.112

encrypts the cks with the SG key srkl (where φ≠Ω∩Ω∩Ω)(jil)

and sends out the rekeying messages. The affected users notice the

version change in data packet, and compute the new keys using the

same one-way function.

(iii) Update of the keys on the path from the new joining user u to the

srkj. The KDC updates all keys on the path from the new leaf to srki

using a one-way function and increases the revision numbers of

those keys. The users notice the revision change and update the

keys using the same one-way function.

(iv) Update of the keys in ji Ω∩Ω . The KDC updates the keys

in ji Ω∩Ω using a one-way function and increases the revision

numbers of those keys. The affected users update the keys using the

same one-way function.

Notice that, if a new service group Sm is formed, then only the step 4

in rekeying algorithm is needed to update the keys.

3.3.3. Summary

This scheme isn’t only suitable for the multi-dimensional data streams

but also flexible for the dynamic service group formation and

decomposition. It scales well when the new SG is formed. In addition,

the storage overhead and the rekeying overhead are less than those in the

MGKMS scheme because of no auxiliary keys in DG-subtrees.

3.4. Distributed key management scheme (DKMS)

In Distributed Key Management Scheme (DKMS),
19

 every SG maintains

an SG server to be used to manage all the users in the SG. The DKMS

proposed a structure that includes two parts: DG part and SG part. The

DG part consists of all SG servers and is used to manage those servers.

The SG part includes an SG server and all users in this SG.

3.4.1. Key graph construction

(i) All SG servers form an SG Server Group (SGSG) and one group

key is assigned to the SGSG. In addition, each SG sever i holds the

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 113

SG key S
ik and the related SKs of data streams that the users in Si

can access.

(ii) Each SG server constructs a subtree. The root node of the

SG-subtree Si is associated with the SG key, S
ik .

(iii) The SG servers connect the SG keys to the root of the SG-subtrees.

The structure of the DKMS is shown in Fig. 10.

Fig. 10 Structure for DKMS

Each user in SG holds the keys on the path from the leaf node to the

root of the SG-subtree and the related SKs of data streams that the users

in the SG can access. Each SG server holds the SG-subtree, the related

SKs and the group key of SGSG.

3.4.2. Rekeying algorithm

Suppose a user u wants to join the SG Si:

(i) The SG server inserts u at the end of one of the shortest paths of the

SG-subtree Si, updates the keys on the path from the leaf to the root

using a one-way function, and increases the revision numbers of

those keys. The users notice the revision change and compute the

new keys using the same one-way function.

(ii) The related SKs that the SG server i holds should be updated. The

SG server i negotiates the new SKs with other SG servers and

multicasts the new SKs encrypted with the group key of SGSG.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.114

(iii) The affected SG servers update the related SKs and multicast the

new SKs encrypted with the SG keys.

Suppose a user u wants to leave the SG Si:

(i) The keys on the path from the leaving user to the root of the

SG-subtree Si should be updated. The SG server i generates the new

keys and multicasts the new keys encrypted with their children keys.

(ii) The related SKs in Si should be updated. The SG server i negotiates

the new SKs with other SG servers and multicasts the new SKs

encrypted with the group key of SGSG.

(iii) The affected SG servers update the related SKs and multicast the

new SKs encrypted with the SG keys.

3.4.3. Summary

Compared with the MGKMS scheme, both the storage overhead and the

rekeying overhead can be reduced. And this scheme supports the service

group formation and decomposition. However, compared with the DACS

scheme, forming a new SG in DKMS is more complicated because the

group key of SGSG shared by all SG servers needs to be updated.

4. Our Proposed Scheme

We propose an ID-based Hierarchical Key Graph Scheme (IDHKGS) to

manage multi-privileged group communications. The proposed scheme

employs a key graph
9
 and each node is assigned an ID to uniquely

identify a key.

The key graph contains two types of nodes: u-nodes which contain

individual keys and k-nodes which contain SG keys, DG keys and

auxiliary keys. The proposed scheme differs from the MGKMS scheme

in two aspects, i.e., the identification of a key and the rekeying operation.

In the proposed scheme, as long as a user knows the IDs�of another

user’s u-node in the group, it can deduce the IDs of k-nodes on the paths

from the u-node to the SK nodes which contain SKs. In addition, we

update the keys using a one-way function for the old users to compute

the new keys by themselves when a user joins/leaves the group or

switches between different SGs.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 115

4.1. Identification of a key

In our proposed scheme, the key graph contains two parts, the SG part

and the DG part. The SG part is composed of all SG-subtrees, and the

DG part is composed of all SK nodes and the k-nodes between the SG

k-nodes and the SK nodes on the key graph. The SGs are denoted by S2,

S3, ... , Si, ... , where i is a prime number. The server assigns two integers

as the ID of each node on the key graph. In each SG-subtree, a node is

identified by the SG i (i= 2, 3, 5, ...) to which the node belongs and by

the position m (m ≥ 0) which is numbered from the root of its SG-subtree

in a top-down and left-right order. The node <i, 0> is the root of the

Si-subtree. We observe that the IDs of a node and its parent node have

the following simple relationship:  >−< 2/)1(, mik is the parent node of k<i, m>.

In the DG part, if a node has two children nodes <j1, n1> and < j2, n2>,

the node is identified by j that is the least common multiple of j1 and j2

and by n (n = max (j1, j2)). If a node only has one child node <j1, n1>,

such as the SK node, the node is identified by j1 and by -1. Fig. 11

illustrates the IDs of nodes in Fig. 3 of Section 3.

Fig. 11 Illustration of key identification

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.116

A user in SG S
i
 holds a set of keys on the paths from the leaf to the

root of the DG-subtree of {Dm, ∀ m : i
mt =1}. When a user in a group

knows the ID of u5’s u-node, <3, 3>, then this user can deduce that user

u5 holds k<3, 1>, k<3, 0>, k<15, 5>, k<15, -1>, k<30, 15>, k<30, -1>.

In order to maintain forward secrecy and backward secrecy, a

rekeying operation is executed when a user joins/leaves a group or

switches between SGs.

4.2. Rekeying algorithm

In order to maintain the forward secrecy and backward secrecy, a

rekeying operation is executed when a user joins/leaves a group or

switches between SGs.

4.2.1. Single user join

When a user joins or switches between SGs, the IDs of some u-nodes in

the SG part will be changed and users should know the up-to-date IDs of

their u-nodes. People prove that a user can deduce its current ID by

knowing its old ID and the maximum ID of the current k-nodes.
20

 Then, a

user in SG can compute its current ID using the same method in our

proposed scheme.

Suppose that a user u requests to join S
i
. The server inserts it at the

end of one of the shortest paths of the S
i
-subtree, assigns <i, m> to the

new u-node, broadcasts the ID of the new u-node, <i, m>J (where J is

named after the join operation of the joining u-node), and the maximum

ID of the current k-nodes in S
i
, <i, nk>. When a user receives the

broadcast messages, the users in the group can deduce the new keys

using a one-way function so that k′ = f (k) (where k′ denotes the updated

version of key k). If k<i, n> is a newly created one, the new key is k'<i, n> = f

(k<i, l> ⊕ k<i, 0>), where k<i, l> is the key of the spitted u-node.

We explain the join operation of user u13, as shown in Fig. 12. When

a user u13 joins the group, a new u-node is created to hold u13’s individual

key. The server broadcasts <3, 8>J (the ID of the new user u13’s u-node)

and <3, 3> (the maximum ID of the k-node in S
3
 after u13 joins the

group).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 117

Fig. 12 Key graph after u13 joins

According to the IDs, the users in the group can deduce that k<3, 1>, k<3,

0>, k<15, 5>, k<15, -1>, k<30, 15> and k<30, -1> need to be updated and k<3, 3> is the

newly created one. Then, the users compute the new key values using a

one-way function by themselves. The new keys are:

k'<3, 1>= f (k<3, 1>), k'<3, 0>= f (k<3, 0>),

k'<15, 5>= f (k<15, 5>), k'<15, -1>= f (k<15, -1>),

k'<30, 15>= f (k<30, 15>), k'<30, -1>= f (k<30, -1>).

k'<3, 3> = f (k<3, 7> ⊕ k<3, 0>).

Finally, the server only needs to encrypt all new keys for the newly

joining user.

s→ u13: { k'<3, 3>, k'<3, 1>, k'<3, 0>, k'<15, 5>, k'<15, -1>,

k'<30, 15>, k'<30, -1>} >< 8,3k

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.118

4.2.2. Single user leave

Suppose that a user u requests to leave S
i
. Then all the keys the user u

holds must be updated. The server broadcasts the ID of the leaving

u-node that is <i, n>L (where L is named after the leave operation of the

leaving u-node). The users in the group deduce the new keys. The user in

SG Si computes the IDs from the leaving node to the root of Si-subtree

and updates these keys through a one-way function such that k′ = f

(k ⊕ k1) where k1 is one of the auxiliary keys that is not on the leave

paths.

For the DG part keys, if a user holds k<j, n> where i is a common factor

of j, then k<j, n> needs to be updated. k<j, n> has two children nodes,

>< 1, lnk and >< 2,/ lnjk . If i is not a common factor of n, the new key is k'<j,

n> = f (k<j, n> ⊕ >< 1, lnk) (l1=0 when n is a prime number, otherwise

l1!=-1,0). Users who hold k<n, 0> or >< 1, lnk can compute the new key by

themselves. If i is a common factor of j/n, the new key is k'<j, n> = f (k<j, n>

⊕ >< 2,/ lnjk) (l2=0 when j/n is a prime number, otherwise l2!=-1,0).

Users who hold k<j/n, 0> or >< 2,/ lnjk can compute the new key. If k<j, n> only

has one child, such as the SKs of data streams to which the leaving user

can subscribe, k'<j, n>= f (k<j, n> ⊕ k'<j, l>) where k'<j, l> is updated child

k-node of k<j, n>.

The server only needs to encrypt and send these new keys to the users

who can not deduce them.

We explain the leave operation of user u8, as shown in Fig. 13. The

server removes the u-node of u8. The server broadcasts <3, 6>L (the ID of

the leaving user u8’s u-node). The users in S3 can deduce that k<3, 2> and

k<3, 0> need to be updated and k<3, 5> and k<3, 1> are chosen to compute k<3,

2> and k<3, 0>, respectively.

k'<3, 2> = f (k<3, 2> ⊕ k<3, 5>), k'<3, 0> = f (k<3, 0> ⊕ k<3, 1>).

In the DG part, the users deduce that k<15, 5>, k<30, 15> k<15, -1> and k<30, -1>

need to be updated and the new keys except the SKs are:

k'<15, 5> = f (k<15, 5> ⊕ k<5, 0>), k'<30, 15> = f (k<30, 15> ⊕ k<2, 0>).

The server needs to encrypt and send the new keys to the users that can

not deduce them. s→ u7: {k'<3, 0>} >< 2,3'k .

s→u5�u7: {k'<15, 5>}
>< 0,3'k , s→u5�u7, u9�u12 : {k'<30, 15>} >< 5,15'k .

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 119

Fig. 13 Key graph after u8 leaves

In addition, the server computes the new SKs,

k'<30, -1> = f (k<30, -1> ⊕ k'<30, 15>), k'<15, -1> = f (k<15, -1> ⊕ k'<15, 5>),

and it encrypts and sends them to the users.

s→u1�u7, u9�u12 : {k'<30, -1>} >< 15,30'k ,

s→u5�u7, u9�u12 : {k'<15, -1>} >< 5,15'k .

4.2.3. Single user switch

In multi-privileged group communications, the users can flexibly change

their access privileges according to their interest at any time. That is, the

users are able to switch between different SGs.

Suppose that a user wants to switch from Si to Sj, which can be

considered as that the user first leaves Si and then joins Sj. The server

broadcasts the IDs of leaving/joining node and the maximum ID of the

current k-nodes in Sj, <i, n>SL, <j, m>SJ and <j, nk>, where SL is named

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.120

after the leave operation of the switching user u-node in Si and SJ is

named after the join operation of the switching user u-node in Sj. The

users deduce the new keys using one-way function that are similar to the

join operation and the leave operation.

We explain the single user switch operation in Fig. 14. A user u8

wants to switch from S2 to S1. A new u-node in S1 is created to hold u8’s

individual key. The server broadcasts the ID of the switching user’s old

u-node and new u-node and the maximum ID of the k-node in S
1
 after u8

switches to S
1
, <3, 6>SL, <2, 6>SJ and <2, 3>. The users deduce that k<2, 1>,

k<2, 0>, k<3, 2>, k<3, 0> need to be updated and k<2, 1> is a newly created one.

Fig. 14 Key graph after u8 switches from S2 to S1

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 121

The new keys are computed as follows:

k'<2, 1>= f (k<2, 1>), k'<2, 0>= f (k<2, 0>),

k'<2, 3> = f (k<2, 7> ⊕ k<2, 0>), k'<3, 2> = f (k<3, 2> ⊕ k<3, 5>),

k'<3, 0> = f (k<3, 0> ⊕ k<3, 1>).

In the DG part, the users deduce that k<15, 5> and k<15, -1> need to be

updated,

k'<15, 5> = f (k<15, 5> ⊕ k<5, 0>).

The server encrypts k'<3, 0> and k'<15, 5>, and sends them to the users who

can not deduce them.

s→ u7: {k'<3, 0>} >< 2,3'k , s→u5�u7: {k'<15, 5>} >< 0,3'k .

Finally, the server computes the new SKs,

k'<15, -1> = f (k<15, -1> ⊕ k'<15, 5>),

and sends them to the corresponding users.
s→u5�u7, u9�u12 : {k'<15, -1>} >< 5,15'k .

4.2.4. Batch update operation

If users join, leave or switch frequently, the individual rekeying

operations, that is, rekeying after each join, leave or switch request, has

very large rekeying overhead. In periodic batch rekeying,
21

 the server

collects all join, leave and switch requests. At the end of each rekeying

period of time, the server processes all requests, generates new keys and

sends them to the corresponding users. In our proposed scheme, when

the SG-subtrees that the users want to join or switch to become full

binary trees, the server splits nodes after the rightmost k-node at the

highest level to accommodate the extra joins. Firstly, the server labels the

k-nodes, and the process consists of 2 steps as follows:

(i) The server removes the u-nodes of leaving users and switching users

in the SGs from which the users switch, labels all k-nodes on the

leave paths as LEAVE.

(ii) The server labels the newly created k-nodes as NEW, labels all

k-nodes on the join paths as JOIN.

To the switching users, the server labels the k-nodes which the users

hold originally but do not hold after the switch operation as LEAVE,

labels the k-nodes which the users do not hold originally but hold after

the switch operation as JOIN.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.122

After the key graph is labeled, the server needs to broadcast the IDs

of all joining users, leaving users and switching users, <ai, bi>L, <cj, dj>J,

pSLpp fe >< , , pSJpp hg >< , , and the IDs of the k-nodes in some SGs that

the users want to join and switch to. According to the broadcast IDs, the

users label the k-nodes which they hold as JOIN, LEAVE or NEW. Then,

the users can deduce the new key for all labeled k-nodes according to the

following three cases.

Case 1: As shown in Fig. 15, if the k-node is labeled as LEAVE,

whether or not it is labeled as JOIN, the users compute the new key value

as follows.

(i) i is a prime number. The operation is similar to the leave operation.

The new key is k'<i, j> = f (k<i, j> ⊕ k<i, l>) when k<i, l> is not labeled. If

both two children nodes are labeled, the server computes the new

key, k'<i, j> = f (k<i, j> ⊕ k'<i, j*2+1>), encrypts and sends it to the users.

(ii) i is not a prime number. k<i, j> has two children nodes,

>< 1, ljk and >< 2,/ ljik . If all ai and ep are not common factors of j, the

new key is k'<i, j> = f (k<i, j> ⊕ >< 1, ljk) (l1=0 when j is a prime number,

otherwise l1!=-1,0). If all ai and ep are not common factors of i/j, the

new key is k'<i, j> = f (k<i, j> ⊕ >< 2,/ ljik) (l2=0 when i/j is a prime

number, otherwise l2!=-1,0). When the two children nodes are

labeled, the server chooses a new child node key to compute k'<i, j>.

Case 2: As shown in Fig. 16, the new key is k'<i, j> = f (k<i, j>).

Case 3: As shown in Fig. 17, the k-node is newly created, the new

key is k'<i, j> = f (k<i, j*2+1> ⊕ k<i, 0>).

0

1

0

Leave
Join
New

<i,j>

0

0

1

Leave

Join

New

<i,j>

<i,j*2+1>

 Fig. 15 k<i, j> is labeled as LEAVE Fig. 16 k<i, j> is labeled as JOIN

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 123

1

0/1

0

Leave
Join
New

<i,j>

Fig. 17 k<i, j> is labeled as NEW

Fig. 18 A batch update example

Fig. 18 shows an example of the batch update operation. During a

rekeying period of time, u1 leaves the group, u13 joins S2, and u5 switches

from S2 to S3. The server removes the u-node u<2, 3>, broadcasts their IDs

and the maximum IDs of k-nodes in some SGs which some users want to

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.124

join and switch to, <2, 3>L, <3, 3>
1SL , <5, 8> 1SJ , <3, 3>J, and <3, 2>, <5,

3>. The server and the users label the k-nodes. The users can compute

the new keys according to the above method.

k'<5, 1>= f (k<5, 1>), k'<5, 0>= f (k<5, 0>), k'<5, -1>= f (k<5, -1>),

k'<15, 5>= f (k<15, 5>), k'<15, -1>= f (k<15, -1>),

k'<5, 3> = f (k<5, 7> ⊕ k<5, 0>),

k'<3, 1> = f (k<3, 1> ⊕ k<3, 4>), k'<3, 0> = f (k<3, 0> ⊕ k<3, 2>),

k'<2, 1> = f (k<2, 1> ⊕ k<2, 4>), k'<2, 0> = f (k<2, 0> ⊕ k<2, 2>),

k'<30, 15> = f (k<30, 15> ⊕ k'<2, 0>).

To the SK, k<30, -1>, the server computes the new key,

k'<30, -1> = f (k<30, -1> ⊕ k'<30, 15>).

Finally, the server encrypts the new keys that some users can not

compute by themselves and sends them to these users.

s→ u6: {k'<3, 0>} >< 1,3'k , s→ u2: {k'<2, 0>, k'<30, 15>} >< 1,2'k ,

s→u5�u13: {k'<30, 15>} >< 5,15'k , s→u2�u13: {k'<30, -1>} >< 15,30'k .

5. Conclusion

In this paper, we investigated the issues of key management in support of

multi-privileged group communications and proposed an ID-based

hierarchical key graph scheme to manage multi-privileged group

communications. According to the relationship between children nodes

and parent node as well as the relationship between data streams and

SGs, each node on key graph is assigned a unique ID, in order for the

node to deduce the IDs of his parent node and ancestor nodes. The server

only needs to broadcast the IDs of joining user and leaving user, the old

users in the group know which nodes they hold should be updated. The

new key value is computed by a one-way function, the server doesn’t

need to send rekeying messages when a user joins. When a user leaves,

part of users also can compute the new keys by themselves. No matter

joining/leaving or switching, the users in the group can deduce some

updated keys, thus the goal of reducing the rekeying overhead at the

server can be achieved.

Currently the proposed scheme uses only binary tree and can’t

flexibly deal with formation and decomposition of service groups. We

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Group Rekeying in Multi-Privileged Group Communications 125

plan to extend its usage of k-ary trees and to propose solutions to the

dynamic formation and decomposition of service groups.

Acknowledgments

This work is supported in part by the National Natural Science

Foundation of China under Grants No. 60503007 and No. 60533040, in

part by the research grant NSC 95-2221-E-110-062 from National

Science Council, Taiwan, and in part by the Program for New Century

Excellent Talents in University (NCET) of the Chinese Ministry of

Education.

References

1. W. Trappe, J. Song, R. Poovendran and K. J. R. Liu, Proceedings of 2001 IEEE

International Conference on Acoustics, Speech, and Signal, (ICASSP, Salt Lake City,

2001), p 1449.

2. S. Rafaeli and D. Hutchison, ACM Computing Surveys, 309(2003).

3. A. Perrig, D. Song and D. Tygar, Proceedings of IEEE Symposium on Security and

Privacy, (IEEE, Oakland, 2001), p. 247.

4. D. McGrew and A. Sherman, Technical Report 0755, (1998).

5. D. M. Wallner, E. J. Harder and R. C. Agee, Internet Draft Report, Filename:

draft-wallner-key-arch -01.txt, (1998).

6. G. H. Chiou and W. T. Chen, IEEE Transactions on Software Engineering, (IEEE

TSE, 1989), p. 929.

7. S. Banerjee and B. Bhattacharjee, IEEE Journal on Selected Areas in

Communications, Special Issue on Network Support for Group Communication,

1511(2002).

8. S. Mittra, Computer Communication Review, (ACM Press, New York, 1997), p. 277.

9. Y. Sun and K. J. R. Liu, Proceedings of IEEE INFOCOM 2004, (INFOCOM, Hong

Kong, 2004), p. 1296.

10. Q. Zhang and Y. Wang, Proceedings of Global Telecommunications Conference,

(GLOBECOM, Dallas, 2004), p. 2067.

11. A. M. Eskicioglu, S. Dexter and E. J. Delp, Proceedings of SPIE Security and

Watermarking of Multimedia Contents, (SPIE, San Diego, 2003), p. 505.

12. J. C. Lin, P. F. Lai and H. C. Lee, Proceedings of IEEE conference on Local

Computer Networks 30th Anniversary, (LCN, Dublin, 2005), p. 336.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

G. Wang et al.126

13. C. Yuan, B. Zhu, M. Su, X. Wang, S. Li and Y. Zhong, Proceedings of IEEE

International Conference on Image Processing 2003, (ICIP, Barcelona, 2003), p. I-

517-20.

14. C. K. Wong, M. Gouda and S. S. Lam, Proceedings of ACM SIGCOMM98,

(SIGCOMM, Vancouver, 1998), p. 68.

15. M. Waldvogel, G. Caronni, D. Sun, N. Weiler and B. Plattner, IEEE Journal on

Selected Areas in Communications, 1614(1999).

16. J. C. Birget, X. Zou, G. Noubir and B. Ramamurthy, Proceedings of International

Conference on Communications, (ICC, Helsinki, 2001), 229(2001).

17. R. Deng, Y. Wu and D. Ma, Computer Security in the 21st Century, 229(2005).

18. D. Ma, Y. Wu, R. Deng and T. Li, Proceedings of 6th International Conference on

Information and Communications Security, (ICICS, Malaga, 2004), p.508.

19. R. Li, J. Li and H. Kameda, Proceedings of ICCNMC, (ICCNMC, Zhangjiajie, 2005),

p.539.

20. X. B. Zhang, S. S. Lam, D. Y. Lee, and Y. R. Yang, IEEE/ACM Transactions on

Networking, 908(2003).

21. Y. R. Yang, X. S. Li, X. B. Zhang and S. S. Lam, Proceedings of the ACM 2001

conference on applications, technologies, architectures, and protocols for computer

communications, (SIGCOMM, San Diego, 2001), 27 (2001).

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

127

Chapter 6

Access Control Policy Negotiation for Remote Hot-Deployed

Grid Services

Jinpeng Huai and Wei Xue

School of Computer Science and Engineering

Beihang University, Beijing, 100083, China

E-mail: huaijp@buaa.edu.cn

Yunhao Liu and Lionel M. Ni

Department of Computer Science and Engineering

Hong Kong University of Science and Technology, Hong Kong, China

E-mail: liu@cs.ust.hk

Service grid is a widely distributed environment, where service

deployers and containers might locate in different autonomous

domains. Different from traditional scenarios like J2EE applications, in

service grids, the access control policy should not be determined by a

deployer or a container only. Existing grid deployment solutions do not

address this unique requirement. We introduce a general approach,

CROWN.ST, an access control policy negotiation solution on remote

hot-deployment for grid services. Based on an access control policy

language derived from non-recursive stratified Datalog with

constraints, we design the negotiation procedure and three types of

meta-policies. We implement a CROWN.ST prototype and evaluate

our design through comprehensive experiments.

1. Introduction

Grid computing has been an attractive distributed computing paradigm

over wide-area network, enabling resource sharing and collaborating

across multiple domains [8, 9]. The research described in this chapter is a

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 128�

Figure 1 Network topology of CROWN grid

part of a larger project named CROWN (China R&D Environment Over

Wide-area Network) [12, 27] , which aims to promote the utilization of

valuable resources and cooperation of researchers nationwide and

worldwide.

The CROWN project is started in late 2003. Several universities and

institutes, such as Tsinghua University, Peking University, Computer

Network Information Center of CAS (China Academy of Science) and

Beihang University, have joined CROWN as the initiating partners. Till

March 2005, CROWN has gathered more than 0.7 Tflops computational

resources, 10TB storage resources and many applications ranging from

gene comparison to climate pattern prediction. Figure 1 illustrates

CROWN Grid topology.

CROWN, as a service grid, with heterogeneous resources wrapped as

grid services, can be accessed using standardized protocol, for example,

the Simple Object Access Protocol (SOAP). All resources being wrapped

are hidden from grid users.

For the convenience of developers and administrators of grid

applications, we develop service container to support the maintenance

and management of grid services. Each service must be deployed into

some target service container before it is accessible to users. We call the

one which deploys a grid service as the deployer of the service.

As a grid is often a widely distributed environment, service deployers

might be located far away from service containers. Hence, we proposed a

mechanism for remote and hot grid service deployment [25]. Due to the

dynamic nature of grids, remote and hot service deployment is quite

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 129�

often in CROWN. In traditional scenarios such as J2EE application

deployments, a deployer is absolutely trusted by an application server

(after authentication and authorization) and can determine the security

policy of the application by itself. In grid environments, the access

control policy of a grid service cannot be determined by the deployer or

the container only. Existing grid deployment solutions do not address

such a unique requirement [2, 11].

In this chapter, we introduce a general approach, CROWN.ST, an

access control policy negotiation solution for remote and hot-deployment

of grid services. As non-recursive stratified Datalog with constraints is

suitable to provide logical semantics for the core parts of the eXtensible

Access Control Markup Language (XACML)[10], we propose an access

control policy language based on it. We then design a negotiation

procedure and meta-policies for the creation of proposals, conflict

resolution, and policy validation during negotiations. Thus, deployers

and containers are able to specify detailed strategies, automating the

policy negotiation procedure and guaranteeing their own concerns are

respected. We implement a CROWN.ST prototype and evaluate our

design by comprehensive experiments. The preliminary results show that

our approach is feasible and effective.

The rest of the chapter is organized as follows. Section 2 describes

the background and related works. Section 3 briefly introduces our

access control policy language and related notions. Section 4 describes

the policy negotiation procedure and meta-policies. Section 5 introduces

the CROWN.ST prototype implementation. We analyze the complexity

of the negotiation procedure in Section 6 and show the experimental

results in Section 7. Section 8 concludes our work and presents future

directions.

2. Background and Related Works

Remote deployment of applications has been investigated by researchers

for a long time. Several popular fundamental software platforms, as well

as those in the grid community, have remote deployment mechanisms

built in [2, 11]. However, up to now, none of them takes access control

policy negotiation into account.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 130�

2.1. Access Control

The remotely deployed grid service wraps raw resources supplied by the

container and exposes higher level service interfaces to the end users.

Normally, neither the deployer nor the container owns both the grid

service and the raw resources. As a nature result, the access control

policy for the grid service should be jointly determined by both parties,

which is a unique requirement in grid systems, and is not supported by

existing access control solutions for grid. For example, PRIMA[19]

allows authoritative users to delegate fine-grained privileges to other

subjects. The Community Authorization Service (CAS)[22] allows sites

to delegate management of a subset of their policy space to the VO.

Akenti[26] allows multiple stakeholders to create policy assertions.

However, above solutions expect the resources have clear ownership and

there exists unique source of authority that has the ultimate authority.

They do not support policy negotiation.

Beyond grid scenarios, some automatic approaches for security policy

reconciliation or negotiation have been proposed. Patrick McDaniel et al

identify an efficient algorithm for two-policy reconciliation and suggest

efficient heuristics for the detection and resolution of intractable

reconciliation[21]. But their target application scenarios are mainly

secure group communications, and the policy language they proposed, i.e.

Ismene, cannot depict detailed authorization policies. Furthermore, their

reconciliation algorithm takes the conservative approach, which is

essentially denials take precedence, to synthesize all access control

policies and cannot choose different approaches dynamically. Oppositely,

our language can be used to depict detailed policies, and meta-policies

are used to select different combining algorithms and validation queries

according to both parties’ requirements.

H. Khurana and V. D. Gligor propose a formal state-transition model

for access control policy negotiation[15]. They cast the negotiation

problem as one of satisfying diverse coalition-member objectives and a

specified set of negotiation constraints. Such a model is based solely on

Role-Based Access Control (RBAC) model and does not provide

automatic mechanisms for the negotiation. Vijay G. Bharadwaj et al

propose a mathematical framework based on semiring-based CSPs

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 131�

(SCSPs) for automatic access control policy negotiation among

autonomous domains[3]. But we think that the guidance provided by

constraints is not enough to bring out practical solutions for automatic

negotiation. We believe that agents for all parties should have prepared

rules for negotiation in order to get concrete policies. Instead, we use

rule-based meta-policies to determine the policy proposals, combining

algorithms and validation queries in which different kinds of constraints

can be expressed.

2.2. Policy Language

In this subsection, we briefly compare our access control policy language

with those policy languages mentioned in literatures.

For every system with security concerns, it is critical to assure that

the access control policies of a system are coherent and meet the

requirements of stakeholders. So, many access control systems use

formal languages or languages with formal semantics to specify their

policies. Our access control policy language is based on non-recursive

stratified Datalog with constraints and can be used to define the formal

semantics of XACML, which is one of the design principles for the

language.

Compared with other access control policy languages with logical

foundation, the advantage of our language is twofold.

First, our language is non-monotonic. In another words, conclusions

drawn before may become wrong when new facts are considered. Many

popular trust management languages, such as RT (Role-based Trust-

management) framework[18, 16], SD3 (Secure Dynamically Distribute

Datalog)[14], and Binder[6], are monotonic, or have monotonic subset,

such as Delegation Logic[17]. The hypothesis of monotonicity simplifies

the distributed management of policies (through delegation, for example),

while it fail to support explicit negation. However, explicit negation is

necessary for resolving potential conflicts between proposals of the

deployers and containers. Our design addressed this issue. Secondly, we

propose to use constructive negation[24] as the operational model for

negation when analyzing and validating policies as constraint logic

programs. In this way, queries can get constructive answers even when

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 132�

meeting non-ground negative goals during the evaluation. If the

negotiation fails, these answers can be returned to the negotiation partner

as hints for the next round of negotiation.

3. Access Control Policy Language

In this section, we introduce the basic constructs of our access control

policy language, which is designed based on the constraint logic

programming paradigm. We refer readers to the surveys [5, 13] for

details about basic logical terms such as facts, rules, monotonic,

stratification, non-recursive and constraints.

3.1. Notations

Our policy language is a multi-sorted logic language created from the

following alphabet.

Constant Symbols: We regard the sets of subjects, resources, actions

and environments as data types and separate them from basic data types

such as integer and float. Accordingly, we use constant symbols begin

with lowercase letter, such as sub_1, res_1, act_1 and env_1 to

denote elements of these types respectively.

Variable Symbols: We use symbols in forms of Sub, Res, Act and

Env as variable symbols ranging over the sets of subject, resources,

actions and environments respectively. For simplicity, variable symbols

ranging over basic data types are not classified accordingly in this work.

In the following, we refer to constant symbols and variable symbols of

type X as “X terms”. For example, sub_1 is a subject term.

Predicate Symbols: Three types of predicate symbols are considered.

(1) Primitive Constraint Predicate Symbols. Constraints are special

relations upon terms of the corresponding constraint domain. A primitive

constraint takes the form
1

(,...)
n

r t t where r is an n-ary primitive

constraint predicate symbol, and
i

t s are terms. A constraint is the

conjunction of several primitive constraints.

(2) Built-in Predicate Symbols, including

Ternary predicate symbols, sub_att, res_att, act_att and

env_att. They represent the attributes of subject, resource, action and

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 133�

environment respectively. To illustrate with sub_att, the first

argument is a subject term, and the second is a string term identifying an

attribute, while the third is a term of some constraint domain. Ternary

predicate symbols, sub_att, res_att, act_att and env_att.

They represent the attributes of subject, resource, action and environment

respectively. To illustrate with sub_att, the first argument is a subject

term, and the second is a string term identifying an attribute, while the

third is a term of some constraint domain.

4-ary predicate symbols, in the form of permit_i, where i is a

unique ordinal number used to stratify the resulting logic program. The

first argument of permit_i is a subject term, the second is a resource

term, and the third is an action term, while the fourth is an environment

term. The predicate permit_i represents a positive authorization

explicitly granted to or implicitly derived for the subject.

4-ary predicate symbols, in the form of deny_i, where i and

arguments are the same as permit_i. The predicate deny_i

represents a negative authorization explicitly granted to or implicitly

derived for the subject.

A 4-ary predicate symbol, permit, with the same arguments as

permit_i. The predicate permit represents the positive authorization

explicitly granted to or implicitly derived for the subject finally.

A 4-ary predicate symbol, deny, with the same arguments as

deny_i. The predicate deny represents the negative authorization

explicitly granted to or implicitly derived for the subject finally.

3.2. Definition of Authorization Policies

According to the above access control policy language, an authorization

policy is defined as follows.

Definition 3.1 An access control policy is a mapping of 4-tuples

(, , ,)s r a e consisting of a subject, a resource, an action, and an

environment, respectively to the set { , }permit deny . The policy is

specified as a program in non-recursive stratified Datalog with constraint

which defines the predicates permit and deny. In following

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 134�

discussions, we will use usual terms such as atom, literal when define the

logic rules that can be expressed in our access control policy language.

Definition 3.2 A subject attribute fact is a rule of the form:

(, ,) .s id val ←sub_att

Where s is a subject term, id is a string term identifying an attribute,

and val is the value of the attribute.

We define resource attribute facts, action attribute facts and

environment attribute facts similarly. All of these facts are called

attribute facts.

Attribute facts represent the authorization information related to

subjects, resources, actions and environments. They maybe specified in

the policy base beforehand, or gathered and specified by the access

control system upon user accesses. To make it clearer, an example, E.A.1,

is given in appendix.

Definition 3.3 A basic authorization rule is a rule of the form:

1
(, , ,) &...& .

n
s r a e L L←permit_i or

1
(, , ,) &...& .

n
s r a e L L←deny_i

where s , r , a , e are subject term, resource term, action term and

environment term respectively, and for each 0 i n< ≤ ,
i

L is either an

attribute literal or a primitive constraint literal.

Basic authorization rules are specified by administrators explicitly, or,

in our scenario, specified in the policy proposals proposed by the

deployers and containers. Each of them represents a special kind of cases

where the user access should be explicitly permitted or denied. An

example, E.A.2, is given in appendix.

By means of different constraint domains and related complete

theories, we can deal with subjects, resources, actions and environments

with complex structures using the basic authorization rules. However,

there may be conflicts among basic authorization rules. In order to

express coherent policies with practical usage, we need the following

composition rules.

Definition 3.4 A composition rule is of the form:

1
(, , ,) &...& .

m
s r a e L L←permit_j or

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 135�

1
(, , ,) &...& .

m
s r a e L L←deny_j or

1
(, , ,) &...& .

m
s r a e L L←permit or

1
(, , ,) &...& .

m
s r a e L L←deny

where s , r , a , e are subject term, resource term, action term and

environment term respectively, and for each 0 i m< ≤ ,
i

L is either an

attribute literal, a primitive constraint literal, a permit_k (deny_k) or

a negative permit_k (deny_k) literal with lower ordinal number

(<k j). permit (deny) should be regarded as permit_k (deny_k)

with highest ordinal number.

Composition rules are used to derive authorizations from basic

authorization rules and resolve possible conflicts among lower level rules.

By means of composition rules, we can establish a tree of sets of

authorization rules. The leaves of this tree are the sets consist of basic

authorization rules and attribute facts. The root is a set of composition

rules with permit anddeny atoms as heads. Every non-leaf node of the

tree is a set of composition rules withpermit_k and deny_k atoms as

heads. Thus, each sub-tree represents a consistent sub-policy of the

whole authorization policy. This tree can be easily mapped to the

hierarchy of policy set, policy, and rules defined in XACML. An

example, E.A.3, is given in appendix.

By specifying an access control policy as a logic program in our

language, you can depict the access control requirements of many real

life applications. The evaluation of an access control policy can be

implemented as the execution of corresponding logic program.

Note that the authorization policy specified above should be

transformed before analyzing or validating it as a constraint logic

program. This is because of the constraint propagation and solving

mechanism used by most constraint logic programming systems, which

needs the constraint variables appear in the head of logic rules. The

transformation procedure is quite straightforward. First, we remove the

subject, resource, action and environment variables from the head, and

drop the attribute literals in the body of logic rules. Second, we insert

appropriate constraint variables into the head literal and add appropriate

constraint literals into the body. An example of the transformation, E.A.4,

is given in appendix.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 136�

Clearly, the transformation is not necessary if we only want to

evaluate the policy against concrete attribute facts and get yes/no

decision.

4. Negotiation Procedure & Meta-Policies

In CROWN, service deployers and containers are often located in

different security domains. As a result, before the access control policy

negotiation for the remote hot-deployed a grid service will be considered,

an appropriate trust relationship must be established, while the

mechanism for trust establishment is out of our discussion scope.

After trust establishment, as shown in Fig. 2, the negotiation

procedure of access control policy takes place. WS-Security [1] is used

to secure the communications between the two parties. We use dashed

line for steps 7 and 8 in Fig. 2 because these two steps may be skipped.

During negotiation, the actions of both parties are controlled by meta-

policies. CROWN.ST has three types of meta-policies as follows.

Figure 2 Negotiation of access control policy

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 137�

(1) Proposal making meta-policies are used to dynamically generate

policy proposals. They are application-specific and mainly used on the

container side. In order to accommodate diverse application requirements,

we used rule-based language to specify this kind of meta-policies.

Typically, they are specified in accordance with the service level

agreements (SLAs) between the deployer and the container, or other

collaboration agreements between them.

(2) Combining algorithm selection meta-policies. We do not see any

single combining algorithm suitable for resolving all possible conflicts in

grid environments, so CROWN.ST employs meta-policies on the

container side to dynamically select appropriate combining algorithms

for synthesis of policy proposals. These meta-policies are also rule-based.

The selection criteria in these rules are logical expressions defined for

each candidate algorithms in terms of properties of the deployer, the

service and the raw resources. Commonly used combining algorithms

include deny-overrides, permit-overrides and explicit priority based

algorithms.

(3) Validity checking meta-policies are used to check the validity of

temporary policies. They are rule-based too and specified in company

with proposal making meta-policies. Their evaluation results are logical

queries consist of constraint literals and a permit or deny literal, and

must be evaluated to true according to the temporary policy before the

temporary policy is accepted. The queries with negative permit literal

and negative deny literal correspond to the traditional safety and

availability queries respectively. Besides authorization constraints such

as separation of duties, the deployer could derive validity checking meta-

policies from SLAs to take full advantage of the raw resources provided

by the container.

To illustrate the negotiation procedure and meta-policies, we consider

the following simple scenario. Alice has a grid service named service1

and want to provide it to her classmate Julius Hibbert. But Alice doesn’t

own enough resources to host the service herself. She finds a remote

container which provides application hosting services and wants to

deploy the service on it. The procedure she takes is the following:

Step 1. Alice generates its policy proposal, i.e. rule permit_1 in

E.A.2 which permits Julius Hibbert to access service1.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 138�

Step 2. Alice submits the proposal to the negotiation service

representing the container.

Step 3. In this scenario, we suppose the container has established

some SLA with Alice beforehand. The negotiation service authenticates

Alice and generates its own policy proposal according to the SLA

between them. The resulting proposal is the rule deny_2 in E.A.2,

which denies user access when CPU usage exceeds 50%. It’s worthy to

note that these two proposals concern different parts of the policy. While

the deployer’s proposal concerns who can access the grid service, the

negotiation service’s proposal concerns how much raw resources can be

used by the grid service.

Step 4. We suppose the negotiation service has two candidate

combining algorithms in this scenario, permit-overrides and deny-

overrides, which are provided for container owner and other remote users

respectively. So, deny-overrides algorithm is selected for Alice. The

resulting temporary policy is illustrated in E.A.3.

Step 5. Because deny-overrides algorithm is selected, the validity

checking on the container side could be omitted safely.

Step 6. The negotiation service returns the temporary policy to the

deployer.

Step 7. The deployer checks the validity of the temporary policy and

makes a decision, i.e., accept it and continue the deployment, or decline

it and terminate the deployment. In this scenario, the validation queries

are also generated according to the SLA between Alice and the container

in order to take full advantage of the raw resources provided by the

container. The resulting query is
_ 50,

("service1","Julius Hibbert", _).

Cpu usage

permit Cpu usage

<=

It is evaluated to true.

Step 8. The deployer submits its acceptance to the negotiation service

and continues the real deployment.

5. CROWN.ST Prototype Implementation

To implement our access control policy language, we use an open source

constraint logic programming system, YAP[4], as the underlying engine.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 139�

Our current prototype only supports linear arithmetic constraints over

rational number. Many authorization information used in grid

environments (e.g., user identifier, time, storage space, cpu frequency)

can be treated as rational numbers, so we could express real life policies

over this constraint domain. For grid users’ convenience, we implement a

translation tool for translating access control policy specified with

simplified XACML into constraint logic program written in our access

control policy language.

Because current constraint logic programming systems lack support

for general constructive negation (most implementations of constructive

negation are specially designed for the Herbrand domain), we developed

a tool for translating policies in our language to logically equivalent

constraint logic program without negation, which will be evaluated using

YAP. In this way, validation queries could get constructive answers even

when validation fails. These answers may be used as hints for the

negotiation partners to accelerate the next round of negotiation.

To implement meta-policies, we used a general, efficient and open

source rule engine, Drools[23], which is based on Rete algorithm [7].

Besides above mentioned tools and libraries, we integrate the

functionalities used in negotiation with other components of CROWN.

On the deployer-side, we developed a GUI tool for negotiation, which

prompts users for necessary decisions such as parameter choosing. The

negotiation progress and temporary policy are visually shown to users.

The user could use the translation and analysis function provided by the

tool to translate and validate temp policies.

On the container-side, the functionalities used in negotiation are

implemented as a standalone grid service, which is called negotiation

service. We deploy this service in each CROWN node. Before deploying

a service, the deployer is redirected to the negotiation service first. The

negotiation service will generate a container side policy proposal and

combine it with deployer’s proposal, then validate the temporary policy

and return validation result accordingly.

In order to reduce the cost spent on maintaining states for long-lived

negotiations, the negotiation service signs and timestamps the temporary

policy and then halts the negotiation procedure if the validation on the

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 140�

deployer-side is likely time consuming. The deployer can validate the

temporary policy offline and then resume the remote deployment.

6. Complexity Analysis

Besides the cost of network transfer and message (de)serialization, the

complexity of access control policy negotiation mainly comes from the

evaluation and enforcement of meta-policies.

The three kinds of meta-policies are rule based, so their evaluations

are tractable (particularly, the Drools engine can achieve linear

complexity w.r.t. the meta-policy size after compilation). However, the

validation queries derived from validation meta-policies must also be

evaluated, which is intractable in general. Because that our policy

language supports explicit negation, the independence of negated

constraints property (INC)[20] does not hold on our constraint domains.

Particularly, testing the satisfiability of a conjunction of constraints and

negated constraints can not be reduced to a series of tests involving a

single negated constraint. As a result, the worst-case complexity of

validation query evaluation is at least co-NP-hard w.r.t. the size of the

temporary policy in general. Besides this, the cost of testing the

satisfiability of each constraint may be not neglectable. For example, the

complexity of constraint solving over discrete finite domain is NP-hard

in general. For our prototype, the complexity of solving linear arithmetic

equations/inequations is polynomial w.r.t. the variable number and

equaitons/inequations size, so its impact is relatively small.

Despite the high worst-case complexity mentioned above, the access

control policy negotiations between grid service deployers and containers

are not too complex according to our experience. Firstly, the basic

authorization rules in these policies usually involve only few (for

example, no more than 3) primitive constraints with few (no more than 3)

variables, because the deployer and container owner usually concern

with different authorization factors. For example, the deployers usually

concern with the grid service user’s identity and other properties. In

contrast, the container owners usually concern with factors about the raw

resources, such as CPU usage, storage size and network speed.

Apparently, this will keep the explosion of sub-goals and the cost of

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 141�

constraint solving grow relatively slow when the rule number increase,

as will also shown in Section 7.

Second, many safety properties can be achieved through careful

proposal making and combination instead of temporary policy validation.

For example, the container owner’s meta-policies can choose deny-

overrides combining algorithm or specify high priorities for deny rules in

its proposal in order to assure the final policy will not abuse the raw

resources.

Third, the validity checking meta-policies used in real scenarios

usually generate validation queries with quite a number of constraint

literals, which could be used to reduce the search space of evaluation

effectively.

7. Performance Evaluation

We successfully deploy CROWN.ST prototype in CROWN Grid

environment. To evaluate its performance, we conduct a series of

experiments. The negotiation service (with underlying container) is

deployed on cluster nodes with Intel Xeon 2.8GHz CPU, 2G RAM,

RedHat Linux EL3.0 and 100M bps Internet connection. On the

deployer-side, we use a notebook with 1.6GHz CPU, 512M RAM,

Debian Linux with kernel 2.6.8 and 100M bps Internet connection. To

make sure the measurements are accurate, no other tasks are running on

cluster nodes and the notebook, except the necessary CROWN

middleware. If not explicitly specified otherwise, each experiment takes

10 run and we plot the average.

Concurrent thread numbers and the sizes of temporary policies are

taken as parameters. The size of a temporary policy is further

characterized using 4 parameters. (1)The number of primitive constraints

in each basic authorization rule, denoted by PC in the following figures;

(2) The size of a primitive constraint, i.e. the number of variables

appearing in the primitive constraint, which is denoted by PCS; (3) The

number of variables appear in the temporary policy, denoted by VAR; (4)

The number of basic authorization rules appear in the temporary policy,

denoted by R. We take the time used by the whole negotiation procedure

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 142�

0 5 10 15 20 25 30
0

1

2

3

4

30 randomly generated test cases (R=8)

N
e

g
o

ti
a

ti
o
n

 t
im

e
 (

s
)

0 5 10 15 20 25 30
0

50

100

150

200

30 randomly generated test cases (R=12)

N
e

g
o

ti
a

ti
o

n
 t

im
e

 (
s

)

Figure 3 Negotiation time for 60 randomly generated test cases with

3, 3, 8PC PCS VAR= = =

as the evaluation metric, which excludes the time used for user

interactions and digital encryption/decryption.

In our first experiment, we randomly generate four groups of test

cases. Each group consists of 30 test cases generated with the same

0 5 10 15 20 25 30
0

50

100

150

30 randomly generated test cases (R=8)

N
e
g
o
ti
a
ti
o
n
 t

im
e
 (

s
)

0 5 10 15 20 25 30
0

1000

2000

3000

30 randomly generated test cases (R=12)

N
e
g
o
ti
a
ti
o
n
 t

im
e
 (

s
)

Figure 4 Negotiation time for 60 randomly generated test cases with

5, 5, 8PC PCS VAR= = =

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 143�

policy size parameters. We further separate the four groups into two

subgroups according to PC and PCS (VAR is fixed in this experiment

because its impact is relatively small). Figures 3 and 4 show the

negotiation time used by these test cases. Each point represents the

negotiation time used by one test case.

From these two figures, we can see that the negotiation time used by

test cases with the same size parameters may differ significantly. This is

because that the application-specific policy and query structures have an

important impact on the negotiation time. As mentioned in Section 6, the

worst-case complexity is at least co-NP hard, but not all cases are the

worst cases. Contrarily, most of the cases are simple according to our

experiences.

The peak value of 30 randomly generated test cases can be regarded

as representing the worst-case. From these two figures we can see that

the worst-case cost increases relatively slow against R when PC and PCS

are relatively small, which are the cases for most grid applications. As a

result, the approach presented in this chapter can be employed in real

grid scenarios.

Figure 5 plots the average negotiation time against the number of

concurrent requests. The policy size parameters of the test case is PC=5,

PCS=3, VAR=8, R=8. As we can see in this figure, the average

negotiation time increases linearly with the increase of concurrent

requests.

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16

18

20

22

24

Number of concurrent requests

N
e
g
o
ti
a
ti
o
n
 t

im
e
 (

s
)

Figure 5 Negotiation time vs. the number of concurrent requests

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 144�

8. Conclusions and Future Works

We propose a general approach for access control policy negotiation

during remote hot-deployment of grid services, which is an important

requirement for service grids like CROWN. We define an access control

policy language based on non-recursive stratified Datalog with

constraints for grid services. The language can be used to specify and

analyze practical access control policies for real life applications. Based

on this language, we design a negotiation procedure, which dynamically

and automatically determine the final access control policy for the grid

service being deployed.

We successfully implement a CROWN.ST prototype, which has been

deployed in our CROWN Grid. We further evaluate CROWN.ST

through comprehensive experiments. Due to the page limit, we only

show the representative results.

CROWN is an actively ongoing project. Therefore, our solutions for

secure, remote and hot deployment of grid services will be further

extended and improved in future versions of CROWN. Future work will

lead into several directions. First, we will improve the performance of

the analyzing algorithm and extend CROWN.ST to support more

constraint domains. Second, related topics such as the integration of trust

negotiation, policy synthesis and service composition are going to be

explored and implemented in CROWN. We believe these are the key

technologies for better collaboration in service grids.

References

1. B. Atkinson and G. Della-Libera, Web Services Security Version 1.0, http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/

2. F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssiere, “Interactive and

Descriptor-based Deployment of Object-Oriented Grid Applications,” in Proceedings

of the 11th IEEE International Symposium on High Performance Distributed

Computing, 2002.

3. V. G. Bharadwaj and J. S. Baras, “Towards Automated Negotiation of Access

Control Policies,” in Proceedings of IEEE 4th International Workshop on Policy for

Distributed Systems and Networks, 2003.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 145�

4. F. Cornelli, E. Damiani, S. D. C. d. Vimercati, S. Paraboschi, and P. Samarati,

“Choosing Reputable Servents in a P2P Network,” in Proceedings of the 11th

international conference on World Wide Web(WWW’02), 2002.

5. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and Expressive

Power of Logic Programming,” ACM Computing Surveys, vol. 33, pp. 374-425,

2001.

6. J. DeTreville, “Binder, a logic-based security language,” in Proceedings of 2002

IEEE Symposium on Security and Privacy, 2002.

7. C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match

problem,” Artificial Intelligence, vol. 19, pp. 17-37, 1982.

8. I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” Intl.

Journal of Supercomputing Applications, vol. 11, pp. 115-129, 1997.

9. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling

Scalable Virtual Organization,” The International Journal of High Performance

Computing Applications, 2001.

10. S. Godik and T. Moses, eXtensible Access Control Markup Language Version 2.0,

working draft 12, http://www.docs.oasis-open.org/xacml/xacml-core-spec-2.0-wd-

12.pdf

11. W. Goscinski and D. Abramson, “Distributed Ant: A System to Support Application

Deployment in the Grid,” in Proceedings of the Fifth IEEE/ACM International

Workshop on Grid Computing, 2004.

12. J. Huai, Y. Zhang, X. Li, and Y. Liu, “Distributed Access Control in CROWN

Groups,” in Proceedings of International Conference on Parallel Processing (ICPP),

2005.

13. J. Jaffar and M. J. Maher, “Constraint Logic Programming: A Survey,” Journal of

Logic Programming, vol. 19/20, pp. 503-581, 1994.

14. T. Jim, “SD3: A trust management system with certified evaluation,” in Proceedings

of 2001 IEEE Symposium on Security and Privacy, 2001.

15. H. Khurana and V. D. Gligor, “A Model for Access Negotiations in Dynamic

Coalitions,” in Proceedings of the 13th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (ICE’04), 2004.

16. N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based trust

management framework,” in Proceedings of the 2002 IEEE Symposium on Security

and Privacy, 2002.

17. N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation Logic: A Logic-based

Approach to Distributed Authorization,” ACM Transactions on Information and

System Security (TISSEC), vol. 6, pp. 128-171, 2003.

18. N. Li and J. C. Mitchell, “Datalog with constraints: A foundation for trust

management languages,” in Proceedings of the 15th International Symposium on

Practical Aspects of Declarative Languages, 2003.

19. M. Lorch, D. Adams, D. Kafura, M. Koneni, A. Rathi, and S. Shah, “The PRIMA

System for Privilege Management, Authorization and Enforcement in Grid

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 146�

Environments,” in Proceedings of The 4th International Workshop on Grid

Computing (Grid 2003), 2003.

20. M. J. Maher, “Adding Constraints to Logic-based Formalisms,” in The Logic

Programming Paradigm: a 25 Years Perspective, Artificial Intelligence Series, V. M.

K.R.Apt, M. Truszczynski and D.S. Warren, Ed.: Springer-Verlag, 1999, pp. 313-

331.

21. P. McDaniel and A. Prakash, “Methods and limitations of security policy

reconciliation,” in Proceedings of IEEE Symposium on Security and Privacy, 2002.

22. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke, “A Community

Authorization Service for Group Collaboration,” in Proceedings of IEEE 3rd

International Workshop on Policies for Distributed Systems and Networks, 2002.

23. N. A. Rupp, The Logic of the Bottom Line: An Introduction to The Drools Project,

http://www.theserverside.com/articles/article.tss?l=Drools

24. P. J. Stuckey, “Negation and Constraint Logic Programming,” Information and

Computation, vol. 118, pp. 12-33, 1995.

25. H. Sun, Y. Zhu, C. Hu, J. Huai, Y. Liu, and J. Li, “Early Experience of Remote and

Hot Service Deployment with Trustworthiness in CROWN Grid,” in Proceedings of

6th ACM International Workshop on Advanced Parallel Processing Technologies,

2005.

26. M. R. Thompson and S. Mudumbai, “Certificate-based Authorization Policy in a PKI

Environment,” ACM Transactions on Information and System Security (TISSEC),

vol. 6, pp. 566-588, 2003.

27. Y. Zhang, J. Huai, Y. Liu, L. Lin, and B. Yang, “A Framework to Provide Trust and

Incentive in CROWN Grid for Dynamic Resource Management,” in Proceedings of

IEEE ICCCN, 2006.

Appendix

E.A.1 Consider the following attribute facts:

(_1,"subject-id",

 "Julius Hibbert") .

sub

←

sub_att

(_1,"current-date",

 "2004 12 25") .

env

− − ←

env_att

The first fact states that the subject identifier of _1sub is Julius

Hibbert. This information maybe gathered by the access control system

after verifying the signature of the user on the requesting message. The

second fact states that the current date is 2004-12-25. This information

maybe gathered by the system from local time server.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

Access Control Policy Negotiation for Remote Hot-Deployed Grid Services 147�

E.A.2 Consider the following basic authorization rules:
(, , ,)

 (,"resource-id","service1"),

 (,"subject-id","Julius Hibbert ").

Sub Res Act Env

Res

Sub

←permit_1

res_att

sub_att

(, , ,)

 (,"cpu-usage",), 50.

Sub Res Act Env

Env X X

←

>

deny_2

env_att

The first rule states that the user Julius Hibbert can access service1 at

any circumstance. The second rule states that nobody can access any

service if the cpu-usage exceeds 50%.

E.A.3 There is a conflict between the two rules in example E.A.2, we can

use the following composition rules to resolve it.

(, , ,)

 (),

 not ().

Sub Res Act Env

Sub,Res, Act,Env

Sub,Res, Act,Env

←permit

permit_1

deny_2

(, , ,)

 ().

Sub Res Act Env

Sub,Res,Act,Env

←deny

deny_2

These composition rules implement so called “denials take

precedence” which is corresponding to the deny-overrides combining

algorithm defined in XACML.

Many useful conflict resolution approaches based on explicit or

implicit precedence can be implemented with our composition rules.

Besides this, to assure the specification completeness of access control

policy, we can further include some default authorization rules. For

example, we can include the following default composition rule

(, , ,)

 not ().

Sub Res Act Env

Sub,Res,Act,Env

←deny

permit_1

to assure that “undefined” cases are regarded as “deny”.

E.A.4 The rules in example E.A.2 and E.A.3 can be transformed to the

following rules before validating.

(_ , _)

 _ "service1",

 _ "Julius Hibbert ".

Resource id Subject id

Resource id

Subject id

←

=

=

permit_1

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Huai et al. 148�

(_) _ 50.Cpu usage Cpu usage← >deny_2

(_ , _ , _)

 (_ , _),

 not (_).

Resource id Subject id Cpu usage

Resource id Subject id

Cpu usage

←permit

permit_1

deny_2

(_) (_).Cpu usage Cpu usage←deny deny_2

(_ , _)

 not (_ , _).

Resource id Subject id

Resource id Subject id

←deny

permit_1

_Resource id , _Subject id , and _Cpu usage are constraint variables.

Xiao, Y., & Pan, Y. (Eds.). (2007). Security in distributed and networking. . v1. Retrieved from http://ebookcentral.proquest.com
Created from ecu on 2019-11-08 00:50:34.

C
op

yr
ig

ht
 ©

 2
00

7.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o

P
te

 L
td

. A
ll

rig
ht

s
re

se
rv

ed
.

